scholarly journals Enhanced osteointegration of poly(methylmethacrylate) bone cements by incorporating strontium-containing borate bioactive glass

2017 ◽  
Vol 14 (131) ◽  
pp. 20161057 ◽  
Author(s):  
Xu Cui ◽  
Chengcheng Huang ◽  
Meng Zhang ◽  
Changshun Ruan ◽  
Songlin Peng ◽  
...  

Although poly(methylmethacrylate) (PMMA) cements are widely used in orthopaedics, they have numerous drawbacks. This study aimed to improve their bioactivity and osseointegration by incorporating strontium-containing borate bioactive glass (SrBG) as the reinforcement phase and bioactive filler of PMMA cement. The prepared SrBG/PMMA composite cements showed significantly decreased polymerization temperature when compared with PMMA and retained properties of appropriate setting time and high mechanical strength. The bioactivity of SrBG/PMMA composite cements was confirmed in vitro , evidenced by ion release (Ca, P, B and Sr) from SrBG particles. The cellular responses of MC3T3-E1 cells in vitro demonstrated that SrBG incorporation could promote adhesion, migration, proliferation and collagen secretion of cells. Furthermore, our in vivo investigation revealed that SrBG/PMMA composite cements presented better osseointegration than PMMA bone cement. SrBG in the composite cement could stimulate new-bone formation around the interface between the composite cement and host bone at eight and 12 weeks post-implantation, whereas PMMA bone cement only stimulated development of an intervening connective tissue layer. Consequently, the SrBG/PMMA composite cement may be a better alternative to PMMA cement in clinical applications and has promising orthopaedic applications by minimal invasive surgery.

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4998
Author(s):  
Haiyang Wang ◽  
Toshinari Maeda ◽  
Toshiki Miyazaki

Polymethyl methacrylate (PMMA)-based bone cement is a popular biomaterial used for fixation of artificial joints. A next-generation bone cement having bone-bonding ability, i.e., bioactivity and antibacterial property is desired. We previously revealed that PMMA cement added with 2-(tert-butylamino)ethyl methacrylate, γ-methacryloxypropyltrimethoxysilane and calcium acetate showed in vitro bioactivity and antibacterial activity. This cement contains calcium acetate at 20% of the powder component. Lower content of the calcium acetate is preferable, because the release of a lot of calcium salt may degrade mechanical properties in the body environment. In the present study, we investigate the effects of calcium acetate content on the setting property and mechanical strength of the cement and apatite formation in simulated body fluid (SBF). The setting time increased and the compressive strength decreased with an increase in calcium acetate content. Although the compressive strength decreased after immersion in SBF for 7 d, all the cements still satisfied the requirements of ISO5833. Apatite was formed in SBF within 7 d on the samples where the calcium acetate content was 5% or more. Therefore, it was found that PMMA cement having antibacterial properties and bioactivity can be obtained even if the amount of the calcium acetate is reduced to 5%.


2018 ◽  
Vol 3 (4) ◽  
pp. 187-196 ◽  
Author(s):  
Grahmm A. Funk ◽  
Jonathan C. Burkes ◽  
Kimberly A. Cole ◽  
Mohamed N. Rahaman ◽  
Terence E. McIff

Abstract. Introduction: Local delivery of antibiotics using bone cement as the delivery vehicle is an established method of managing implant-associated orthopedic infections. Various fillers have been added to cement to increase antibiotic elution, but they often do so at the expense of strength. This study evaluated the effect of adding a borate bioactive glass, previously shown to promote bone formation, on vancomycin elution from PMMA bone cement.Methods: Five cement composites were made: three loaded with borate bioactive glass along with 0, 1, and 5 grams of vancomycin and two without any glass but with 1 and 5 grams vancomycin to serve as controls. The specimens were soaked in PBS. Eluate of vancomycin was collected every 24 hours and analyzed by HPLC. Orthopedic-relevant mechanical properties of each composite were tested over time.Results: The addition of borate bioactive glass provided an increase in vancomycin release at Day 1 and an increase in sustained vancomycin release throughout the treatment period. An 87.6% and 21.1% increase in cumulative vancomycin release was seen for both 1g and 5g loading groups, respectively. Compressive strength of all composites remained above the weight-bearing threshold of 70 MPa throughout the duration of the study with the glass-containing composites showing comparable strength to their respective controls.Conclusion: The incorporation of borate bioactive glass into commercial PMMA bone cement can significantly increase the elution of vancomycin. The mechanical strength of the cement-glass composites remained above 70 MPa even after soaking for 8 weeks, suggesting their suitability for orthopedic weight-bearing applications.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Tiao Lin ◽  
Xun-Zi Cai ◽  
Ming-Min Shi ◽  
Zhi-Min Ying ◽  
Bin Hu ◽  
...  

Ultrasound (US) has been used to increase elution of antibiotic from an antibiotic-loaded poly(methyl methacrylate) (PMMA) bone cement (ALBC). We aimed to further investigate whether microbubbles-mediated US (US + MB) facilitate elution of vancomycin (VAN) from cylindrical specimens and enhance the activity of the eluted antibiotic againstStaphylococcus aureus(S. aureus) in vitro. The study groups comprised cylindrical bone cement fabricated with VAN (VAN), ALBC using US (VAN + US), and ALBC using MB-mediated US (VAN + US + MB). We also carried out an in vivo study involving the activity of VAN from cylindrical cement implanted in tibiae of New Zealand white rabbits inoculated withS. aureus. We found that (1) in vitro, elution from VAN + US + MB cylinders was significantly higher than from either the VAN or VAN + US specimens; (2) the activity of the eluted VAN from the VAN + US + MB cylinders against planktonicS. aureuswas significantly higher than from either the control or VAN or VAN + US specimens; and (3) in the rabbits, the activity of the eluted VAN from the VAN + US + MB cylinders againstS. aureuswas significantly higher than from either the control or VAN or VAN + US specimens. The present results suggest that VAN-loaded PMMA cement irradiated with MB-mediated US may have a role in controlling prosthetic joint infection.


2015 ◽  
Vol 59 (12) ◽  
pp. 7571-7580 ◽  
Author(s):  
Wei-Tao Jia ◽  
Qiang Fu ◽  
Wen-Hai Huang ◽  
Chang-Qing Zhang ◽  
Mohamed N. Rahaman

ABSTRACTThere is growing interest in biomaterials that can cure bone infection and also regenerate bone. In this study, two groups of implants composed of 10% (wt/wt) teicoplanin (TEC)-loaded borate bioactive glass (designated TBG) or calcium sulfate (TCS) were created and evaluated for their ability to release TECin vitroand to cure methicillin-resistantStaphylococcus aureus(MRSA)-induced osteomyelitis in a rabbit model. When immersed in phosphate-buffered saline (PBS), both groups of implants provided a sustained release of TEC at a therapeutic level for up to 3 to 4 weeks while they were gradually degraded and converted to hydroxyapatite. The TBG implants showed a longer duration of TEC release and better retention of strength as a function of immersion time in PBS. Infected rabbit tibiae were treated by debridement, followed by implantation of TBG or TCS pellets or intravenous injection with TEC, or were left untreated. Evaluation at 6 weeks postimplantation showed that the animals implanted with TBG or TCS pellets had significantly lower radiological and histological scores, lower rates of MRSA-positive cultures, and lower bacterial loads than those preoperatively and those of animals treated intravenously. The level of bone regeneration was also higher in the defects treated with the TBG pellets. The results showed that local TEC delivery was more effective than intravenous administration for the treatment of MRSA-induced osteomyelitis. Borate glass has the advantages of better mechanical strength, more desirable kinetics of release of TEC, and a higher osteogenic capacity and thus could be an effective alternative to calcium sulfate for local delivery of TEC.


2006 ◽  
Vol 309-311 ◽  
pp. 801-804 ◽  
Author(s):  
S.B. Cho ◽  
Akari Takeuchi ◽  
Ill Yong Kim ◽  
Sang Bae Kim ◽  
Chikara Ohtsuki ◽  
...  

In order to overcome the disadvantage of commercialized PMMA bone cement, we have developed novel PMMA-based bone cement(7P3S) reinforced by 30 wt.% of bioactive CaO-SiO2 gel powders to induce the bioactivity as well as to increase mechanical property for the PMMA bone cement. The novel 7P3S bone cement hardened after mixing for about 7 minutes. For in vitro evaluation, apatite forming ability of it was investigated using SBF. When the novel 7P3S bone cement was soaked into SBF, it formed apatite on its surfaces within 1 week Furthermore; there is no decrease in its compressive strength within 9 weeks soaking in SBF. It is though that hardly decrease in compressive strength of 7P3S bone cement in SBF is due to the relative small amount of gel powder or its spherical shape and monosize. In vivo evaluation of the novel 7P3S bone cement was carried out using rabbit. After implantion into rabbit tibia for several periods, the interface between novel bone cement and natural bone was evaluated by CT images. According to the results, the novel bone cement directly contact to the natural bone without fibrous tissue after implantation for 4 weeks. This results indicates that the newly developed 7P3S bone cement can bond to the living bone and also be effectively used as bioactive bone cement without decrease in mechanical property.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Ashley E. Levack ◽  
Kathleen Turajane ◽  
Xu Yang ◽  
Andy O. Miller ◽  
Alberto V. Carli ◽  
...  

2020 ◽  
Vol 109 (2) ◽  
pp. 146-158
Author(s):  
Romina Shafaghi ◽  
Omar Rodriguez ◽  
Anthony W. Wren ◽  
Loraine Chiu ◽  
Emil H. Schemitsch ◽  
...  

2013 ◽  
Vol 57 (7) ◽  
pp. 3293-3298 ◽  
Author(s):  
Zongping Xie ◽  
Xu Cui ◽  
Cunju Zhao ◽  
Wenhai Huang ◽  
Jianqiang Wang ◽  
...  

ABSTRACTThe treatment of osteomyelitis induced by Gram-negative bacilli is rarely reported in the literature. This study established a rabbit tibia model of osteomyelitis induced by the Gram-negative bacillusEscherichia coli. Using this model, pellets composed of a chitosan-bonded mixture of borate bioactive glass and gentamicin were evaluatedin vitroandin vivofor the treatment of osteomyelitis induced byEscherichia coli. Our results showed that the pellets in phosphate-buffered saline released gentamicin continuously over 26 days. Without the simultaneous use of a systemic antibiotic, the implantation of the gentamicin-loaded pellets into the osteomyelitis region of the tibia resulted in the eradication of 81.82% of infections, as determined by microbiological, histological and radiographic evaluation, and supported the ingrowth of new bone into the tibia defects after 6 weeks of implantation. The results indicate that the gentamicin-loaded borate bioactive glass implant, combining sustained drug release with the ability to support new bone formation, could provide a method for treating osteomyelitis induced by Gram-negative bacilli.


2020 ◽  
Vol 25 (2) ◽  
pp. 44-51
Author(s):  
Érica Miranda de Torres ◽  
José Valladares-Neto ◽  
Karina de Oliveira Bernades ◽  
Luis Fernando Naldi ◽  
Hianne Miranda de Torres ◽  
...  

ABSTRACT Objective: To evaluate facial profile changes promoted by polymethyl methacrylate (PMMA) cement graft to reduce excessive gingival display due to hyperactivity of the elevator muscles of the upper lip during smiling. Methods: Eleven patients (all females, age range: 20 to 43 years) presenting gingival smile that were treated with PMMA cement grafts in a private clinic were selected for this retrospective study. Three angular and ten linear cephalometric facial profile measurements were performed preoperatively (baseline, T1) and at least 6 months postoperatively (T2). Differences between T1 and T2 were verified by Wilcoxon test, and the correlation between the thickness of the graft and facial profile changes was statistically evaluated by Spearman’s Coefficient test. The significance level was set at p< 0.05. Results: The nasolabial angle (p= 0.03) and the labial component of the nasolabial angle showed statistically significant differences (p= 0.04), with higher values in T2. No correlations were found between the graft thickness and the statistically significant facial profile changes (p> 0.05). Conclusions: The PMMA bone cement graft projected the upper lip forward, thereby increasing the nasolabial angle without affecting the nasal component. No correlations between the graft thickness and the facial profile changes were detected.


Sign in / Sign up

Export Citation Format

Share Document