An electron-diffraction examination of thin films of lithium fluoride and copper prepared by vacuum evaporation

Thin films of lithium fluoride and copper prepared by vacuum evaporation have been examined by electron diffraction. From accurate measurements of the interplanar spacings, the stresses in the specimens have been determined. Lithium fluoride specimens consist of long cylinders (diameter ~ 100 Å) having their axes perpendicular to the substrate, there being no fixed relation between the axis of a cylinder and the crystallographic axes, apart from a slight tendency for the [100] crystal axis to lie along the axis of the cylinder. A surface tension of the order of —1000 dyn/cm acts over the surface of each crystal. Copper specimens consist of crystallites in the form of disks (diameter ~ 90 Å, thickness ~ 15Å) parallel to (111) planes. Stresses exist in the specimen due to superficial oxidation of the specimen as a whole, not of the individual crystallites.

Thin films of aluminium and gold prepared by vacuum evaporation have been examined by electron diffraction, and accurate measurements made of the interplanar spacings. The results can be interpreted either ( a ) by assuming the crystals to be in the form of disks parallel to (111) planes and subject to a homogeneous stress which is predominantly a tension parallel to the [111] direction, or ( b ) by assuming the crystals to be large and to contain a sessile dislocation. The latter interpretation is preferred. It implies that in the majority of the crystals there is an extra (111) sheet of atoms extending over about 10% of the crystal.


Author(s):  
R. H. Geiss

The theory and practical limitations of micro area scanning transmission electron diffraction (MASTED) will be presented. It has been demonstrated that MASTED patterns of metallic thin films from areas as small as 30 Åin diameter may be obtained with the standard STEM unit available for the Philips 301 TEM. The key to the successful application of MASTED to very small area diffraction is the proper use of the electron optics of the STEM unit. First the objective lens current must be adjusted such that the image of the C2 aperture is quasi-stationary under the action of the rocking beam (obtained with 40-80-160 SEM settings of the P301). Second, the sample must be elevated to coincide with the C2 aperture image and its image also be quasi-stationary. This sample height adjustment must be entirely mechanical after the objective lens current has been fixed in the first step.


Author(s):  
D J H Cockayne ◽  
D R McKenzie

The study of amorphous and polycrystalline materials by obtaining radial density functions G(r) from X-ray or neutron diffraction patterns is a well-developed technique. We have developed a method for carrying out the same technique using electron diffraction in a standard TEM. It has the advantage that studies can be made of thin films, and on regions of specimen too small for X-ray and neutron studies. As well, it can be used to obtain nearest neighbour distances and coordination numbers from the same region of specimen from which HREM, EDS and EELS data is obtained.The reduction of the scattered intensity I(s) (s = 2sinθ/λ ) to the radial density function, G(r), assumes single and elastic scattering. For good resolution in r, data must be collected to high s. Previous work in this field includes pioneering experiments by Grigson and by Graczyk and Moss. In our work, the electron diffraction pattern from an amorphous or polycrystalline thin film is scanned across the entrance aperture to a PEELS fitted to a conventional TEM, using a ramp applied to the post specimen scan coils. The elastically scattered intensity I(s) is obtained by selecting the elastically scattered electrons with the PEELS, and collecting directly into the MCA. Figure 1 shows examples of I(s) collected from two thin ZrN films, one polycrystalline and one amorphous, prepared by evaporation while under nitrogen ion bombardment.


Author(s):  
David A. Muller

The sp2 rich amorphous carbons have a wide variety of microstructures ranging from flat sheetlike structures such as glassy carbon to highly curved materials having similar local ordering to the fullerenes. These differences are most apparent in the region of the graphite (0002) reflection of the energy filtered diffracted intensity obtained from these materials (Fig. 1). All these materials consist mainly of threefold coordinated atoms. This accounts for their similar appearance above 0.8 Å-1. The fullerene curves (b,c) show a string of peaks at distance scales corresponding to the packing of the large spherical and oblate molecules. The beam damaged C60 (c) shows an evolution to the sp2 amorphous carbons as the spherical structure is destroyed although the (220) reflection in fee fcc at 0.2 Å-1 does not disappear completely. This 0.2 Å-1 peak is present in the 1960 data of Kakinoki et. al. who grew films in a carbon arc under conditions similar to those needed to form fullerene rich soots.


2010 ◽  
Vol 16 (S2) ◽  
pp. 1742-1743 ◽  
Author(s):  
RH Geiss ◽  
RR Keller ◽  
DT Read

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


2008 ◽  
Author(s):  
Ajit Mahadkar ◽  
Alka Chauhan ◽  
Madhavi Thakurdesai ◽  
Deepak Gaikwad ◽  
P. Predeep ◽  
...  

2000 ◽  
Vol 87 (9) ◽  
pp. 5693-5695 ◽  
Author(s):  
Dmitri Litvinov ◽  
J. Kent Howard ◽  
Sakhrat Khizroev ◽  
Heng Gong ◽  
David Lambeth

1990 ◽  
Vol 202 ◽  
Author(s):  
J. A. Barnard ◽  
E. Haftek ◽  
A. Waknis ◽  
M. Tan

ABSTRACTThe growth and microstructural evolution of Al/Ni and Ni/AI bilayer thin films have been investigated as a function of Al and Ni layer thickness and thermal treatment by transmission electron microscopy. Studies were also made of Al and Ni single layers of varying thickness. All films were grown by dc magnetron sputtering using carbon coated Cu TEM grids as substrates. For the bilayers, the Al thickness was fixed at either 3.5 or 7.0 nm while the Ni thickness was varied systematically from 3.2 to 12.8 nm. Deposition sequence significantly influenced bilayer microstructure even in as-deposited samples. Al/Ni bilayers generally exhibited a finer microstructure than Ni/AI. In the 3.5 nm Al/Ni bilayers no conclusive electron diffraction evidence was found for elemental Al while for the reverse sequence both Al and NiAl3 diffraction rings were found. In the 7.0 nm Al/Ni bilayers diffraction rings due to Al were observed. The reverse sequence again produced both Al and NiAl3 diffraction rings. Interestingly, diffraction rings due to the Ni layers were found for all samples but were consistently measured at positions corresponding to a 2.5–3.5% increase in interplanar spacing. Annealing at 385°C produced evidence for generalized grain growth and strong accentuation of the electron diffraction rings due to the NiAl3 phase. Again, deposition significantly influenced annealed bilayer microstructure. For the Al/Ni sequence annealing produced polycrystalline N1AI3 island-like structures, while for Ni/AI bilayers, annealing promoted the growth of small NiAl3 crystals uniformly distributed in the film.


Sign in / Sign up

Export Citation Format

Share Document