Variable transfer rates in superfluid helium films

From an experimental investigation of superfluid film transfer in narrow beakers in helium II it emerges that there are probably two kinds of film. A ‘normal’ film is formed by superfluid creep over a dry substrate. A ‘thick’ film remains when liquid has drained from a substrate that has previously been immersed in the liquid helium bath. A comparison has been made of the superfluid flow between the two types of film. Scatter of values of transfer rate associated with a normal film is attributed to third sound generated by bath waves impinging on the meniscus at the base of the film. The thick film shows an enhanced rate of transfer which can persist for long periods of time in quiet conditions, but which can be abruptly diminished by disturbances such as bath surface agitation. There is a maximum stable length for a thick film exhibiting the full enhanced rate. The enhanced rate can be as much as 60% greater than the normal rate at 1° K, but the difference between the two rates of transfer disappears above 1.8 °K. No enhanced rate of transfer at any temperature is observed in beakers as large as 8 mm diameter.

It is argued that the thermodynamic approach used by Goodstein and Saffman in their theory of thin superfluid helium films is incorrect. Their theory does not explain Keller’s experiment. The value they obtained for the convection velocity of third sound in a film with superfluid flow is consequently unfounded theoretically. Their calculation of third sound attenuation is shown to be incomplete.


1976 ◽  
Vol 14 (11) ◽  
pp. 4883-4888 ◽  
Author(s):  
Kenneth L. Telschow ◽  
Robert K. Galkiewicz ◽  
Robert B. Hallock

1983 ◽  
Vol 2 (5) ◽  
pp. 1311-1318
Author(s):  
P. Du ◽  
T. van der Merwe

2005 ◽  
Vol 297-300 ◽  
pp. 1446-1451 ◽  
Author(s):  
Takeshi Kasuya ◽  
Hideto Suzuki

The fatigue strength of TiAl intermetallic alloy coated with TiAlN film was studied in vacuum at 1073K using a SEM-servo testing machine. In addition, three kinds of TiAlN films were given by physical vapor deposition (1, 3, and 10μ m). The fatigue strength of 3μ m was highest. Also, the fatigue strength of 1μ m was lowest. From this result, existence of optimum film thickness was suggested because the difference of fatigue strength arose in each film thickness. The justification for existence of optimum film thickness is competition of 45-degree crack and 90-degree crack. The 45-degree crack is phenomenon seen in the thin film (1μ m), and is caused by plastic deformation of TiAl substrate. The 45-degree crack is the factor of the fatigue strength fall by the side of thin film. In contrast, the 90-degree crack is phenomenon in the thick film (10μ m), and is caused as result of reaction against load to film. The 90-degree crack is the factor of the fatigue strength fall by the side of thick film. In conclusion, the optimum film thickness can perform meso fracture control, and improves fatigue strength.


1976 ◽  
Vol 56 (3) ◽  
pp. 996-997
Author(s):  
Y. Ichikawa ◽  
T. Usui

1988 ◽  
Vol 110 (4) ◽  
pp. 299-305 ◽  
Author(s):  
K. Chen

The design of a plane-type, bidirectional thermal diode is presented. This diode is composed of two vertical plates and several fluid-filled loops with their horizontal segments soldered to the vertical plates. This invention is simple in construction and low in cost. The direction of heat transfer in the invented thermal diode can be easily reversed. These features of the present invention make it very attractive to solar energy utilization. Natural convection analysis for thermosyphon operations was adopted for heat transfer calculations of the fluid-filled loops. A one-dimensional heat transfer analysis was employed to estimate the heat transfer rate and ratio of heat transfer rates of the diode under forward and reverse bias.


Sign in / Sign up

Export Citation Format

Share Document