scholarly journals Predation drives the evolution of brain cell proliferation and brain allometry in male Trinidadian killifish, Rivulus hartii

2019 ◽  
Vol 286 (1917) ◽  
pp. 20191485
Author(s):  
Kent D. Dunlap ◽  
Joshua H. Corbo ◽  
Margarita M. Vergara ◽  
Shannon M. Beston ◽  
Matthew R. Walsh

The external environment influences brain cell proliferation, and this might contribute to brain plasticity underlying adaptive behavioural changes. Additionally, internal genetic factors influence the brain cell proliferation rate. However, to date, researchers have not examined the importance of environmental versus genetic factors in causing natural variation in brain cell proliferation. Here, we examine brain cell proliferation and brain growth trajectories in free-living populations of Trinidadian killifish, Rivulus hartii , exposed to contrasting predation environments. Compared to populations without predators, populations in high predation (HP) environments exhibited higher rates of brain cell proliferation and a steeper brain growth trajectory (relative to body size). To test whether these differences in the wild persist in a common garden environment, we reared first-generation fish originating from both predation environments in uniform laboratory conditions. Just as in the wild, brain cell proliferation and brain growth in the common garden were greater in HP populations than in no predation populations. The differences in cell proliferation observed across the brain in both the field and common garden studies indicate that the differences are probably genetically based and are mediated by evolutionary shifts in overall brain growth and life-history traits.

2016 ◽  
Vol 87 (3) ◽  
pp. 156-166 ◽  
Author(s):  
Kent D. Dunlap

Fish have unusually high rates of brain cell proliferation and neurogenesis during adulthood, and the rates of these processes are greatly influenced by the environment. This high level of cell proliferation and its responsiveness to environmental change indicate that such plasticity might be a particularly important mechanism underlying behavioral plasticity in fish. However, as part of their highly labile physiology and morphology, fish also respond to the environment through processes that affect cell proliferation but that are not specific to behavioral change. For example, the environment has nonspecific influences on cell proliferation all over the body via its effect on body temperature and growth rate. In addition, some fish species also have an unusual capacity for sex change and somatic regeneration, and both of these processes likely involve widespread changes in cell proliferation. Thus, in evaluating the possible behavioral role of adult brain cell proliferation, it is important to distinguish regionally specific responses in behaviorally relevant brain nuclei from global proliferative changes across the whole brain or body. In this review, I first highlight how fish differ from other vertebrates, particularly birds and mammals, in ways that have a bearing on the interpretation of brain plasticity. I then summarize the known effects of the physical and social environment, sex change, and predators on brain cell proliferation and neurogenesis, with a particular emphasis on whether the effects are regionally specific. Finally, I review evidence that environmentally induced changes in brain cell proliferation and neurogenesis in fish are mediated by hormones and play a role in behavioral responses to the environment.


2008 ◽  
Vol 432 (2) ◽  
pp. 111-116 ◽  
Author(s):  
Haiyan Cheng ◽  
Jianchun Yu ◽  
Zhiguo Jiang ◽  
Xuezhu Zhang ◽  
Cunzhi Liu ◽  
...  

2020 ◽  
Vol 16 (1) ◽  
pp. 20190654 ◽  
Author(s):  
David J. Mitchell ◽  
Regina Vega-Trejo ◽  
Alexander Kotrschal

Predation is a near ubiquitous factor of nature and a powerful selective force on prey. Moreover, it has recently emerged as an important driver in the evolution of brain anatomy, though population comparisons show ambiguous results with considerable unexplained variation. Here, we test the reproducibility of reduced predation on evolutionary trajectories of brain evolution. We make use of an introduction experiment, whereby guppies ( Poecilia reticulata ) from a single high predation stream were introduced to four low predation streams. After 8–9 years of natural selection in the wild and two generations of common garden conditions in the laboratory, we quantified brain anatomy. Relative brain region sizes did not differ between populations. However, we found a general increase and striking variation in relative brain size of introduced populations, which varied from no change to a 12.5% increase in relative brain weight, relative to the ancestral high predation population. We interpret this as evidence for non-parallel evolution, which implies a weak or inconsistent association of relative brain size with fitness in low predation sites. The evolution of brain anatomy appears sensitive to unknown environmental factors, or contingent on either chance events or historical legacies of environmental change.


Author(s):  
L. M. Sosedova ◽  
V. S. Rukavishnikov ◽  
E. A. Titov

The results of a study on rats toxicity of nanoparticles of metals bismuth, gadolinium and silver encapsulated in a natural biopolymer matrix arabinogalactan are presented. When intake of nanocomposite of silver revealed the readiness of the brain cell to apoptosis. The effect of bismuth and gadolinium nanocomposites did not cause an increase in the process of programmed cell death.


2020 ◽  
Vol 31 (6) ◽  
pp. 681-689
Author(s):  
Jalal Mirakhorli ◽  
Hamidreza Amindavar ◽  
Mojgan Mirakhorli

AbstractFunctional magnetic resonance imaging a neuroimaging technique which is used in brain disorders and dysfunction studies, has been improved in recent years by mapping the topology of the brain connections, named connectopic mapping. Based on the fact that healthy and unhealthy brain regions and functions differ slightly, studying the complex topology of the functional and structural networks in the human brain is too complicated considering the growth of evaluation measures. One of the applications of irregular graph deep learning is to analyze the human cognitive functions related to the gene expression and related distributed spatial patterns. Since a variety of brain solutions can be dynamically held in the neuronal networks of the brain with different activity patterns and functional connectivity, both node-centric and graph-centric tasks are involved in this application. In this study, we used an individual generative model and high order graph analysis for the region of interest recognition areas of the brain with abnormal connection during performing certain tasks and resting-state or decompose irregular observations. Accordingly, a high order framework of Variational Graph Autoencoder with a Gaussian distributer was proposed in the paper to analyze the functional data in brain imaging studies in which Generative Adversarial Network is employed for optimizing the latent space in the process of learning strong non-rigid graphs among large scale data. Furthermore, the possible modes of correlations were distinguished in abnormal brain connections. Our goal was to find the degree of correlation between the affected regions and their simultaneous occurrence over time. We can take advantage of this to diagnose brain diseases or show the ability of the nervous system to modify brain topology at all angles and brain plasticity according to input stimuli. In this study, we particularly focused on Alzheimer’s disease.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1071
Author(s):  
Isabel Costantino ◽  
Juliet Nicodemus ◽  
Jerold Chun

Over the past 20 years, analyses of single brain cell genomes have revealed that the brain is composed of cells with myriad distinct genomes: the brain is a genomic mosaic, generated by a host of DNA sequence-altering processes that occur somatically and do not affect the germline. As such, these sequence changes are not heritable. Some processes appear to occur during neurogenesis, when cells are mitotic, whereas others may also function in post-mitotic cells. Here, we review multiple forms of DNA sequence alterations that have now been documented: aneuploidies and aneusomies, smaller copy number variations (CNVs), somatic repeat expansions, retrotransposons, genomic cDNAs (gencDNAs) associated with somatic gene recombination (SGR), and single nucleotide variations (SNVs). A catch-all term of DNA content variation (DCV) has also been used to describe the overall phenomenon, which can include multiple forms within a single cell’s genome. A requisite step in the analyses of genomic mosaicism is ongoing technology development, which is also discussed. Genomic mosaicism alters one of the most stable biological molecules, DNA, which may have many repercussions, ranging from normal functions including effects of aging, to creating dysfunction that occurs in neurodegenerative and other brain diseases, most of which show sporadic presentation, unlinked to causal, heritable genes.


2020 ◽  
Vol 22 (1) ◽  
pp. 99
Author(s):  
Aleah Holmes ◽  
Yan Xu ◽  
Juneyoung Lee ◽  
Michael E. Maniskas ◽  
Liang Zhu ◽  
...  

Social isolation and loneliness are risk factors for stroke. Elderly women are more likely to be isolated. Census data shows that in homeowners over the age of 65, women are much more likely to live alone. However, the underlying mechanisms of the detrimental effects of isolation have not been well studied in older females. In this study, we hypothesized that isolation impairs post-stroke recovery in aged female mice, leading to dysregulated microRNAs (miRNAs) in the brain, including those previously shown to be involved in response to social isolation (SI). Aged C57BL/6 female mice were subjected to a 60-min middle cerebral artery occlusion and were randomly assigned to either single housing (SI) or continued pair housing (PH) immediately after stroke for 15 days. SI immediately after stroke led to significantly more brain tissue loss after stroke and higher mortality. Furthermore, SI significantly delayed motor and sensory recovery and worsened cognitive function, compared to PH. A decrease in cell proliferation was seen in the dentate gyrus of SI mice assessed by bromodeoxyuridine (BrdU) labeling. miRNAome data analysis revealed changes in several miRNAs in the brain, such as miR-297a-3p and miR-200c-3p, which are known to regulate pathways involved in cell proliferation. In conclusion, our data suggest that SI can lead to a poor post-stroke recovery in aged females and dysregulation of miRNAs and reduced hippocampal cell proliferation.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3297
Author(s):  
Shun-Kuo Sun ◽  
Chun-Yi Ho ◽  
Wei-Yang Yen ◽  
Su-Der Chen

Extracts from Hericium erinaceus can cause neural cells to produce nerve growth factor (NGF) and protect against neuron death. The objective of this study was to evaluate the effects of ethanol and hot water extracts from H. erinaceus solid-state fermented wheat product on the brain cells of zebrafish embryos in both pre-dosing protection mode and post-dosing repair mode. The results showed that 1% ethanol could effectively promote zebrafish embryo brain cell death. Both 200 ppm of ethanol and water extracts from H. erinaceus solid-state fermented wheat product protected brain cells and significantly reduced the death of brain cells caused by 1% ethanol treatment in zebrafish. Moreover, the zebrafish embryos were immersed in 1% ethanol for 4 h to cause brain cell damage and were then transferred and soaked in the 200 ppm of ethanol and water extracts from H. erinaceus solid-state fermented wheat product to restore the brain cells damaged by the 1% ethanol. However, the 200 ppm extracts from the unfermented wheat medium had no protective and repairing effects. Moreover, 200 ppm of ethanol and water extracts from H. erinaceus fruiting body had less significant protective and restorative effects on the brain cells of zebrafish embryos. Both the ethanol and hot water extracts from H. erinaceus solid-state fermented wheat product could protect and repair the brain cells of zebrafish embryos damaged by 1% ethanol. Therefore, it has great potential as a raw material for neuroprotective health product.


Sign in / Sign up

Export Citation Format

Share Document