Lunar differentiation processes as characterized by trace element abundances

The pattern of incompatible elements (K, Rb, Ba, r.e.e., H f etc.) is the same for most samples from the lunar highlands. It is suspected that this pattern of incompatible elements is typical for the whole lunar crust. This seems to be a reasonable assumption as one can show from heat flow data that a large part of the Moon’s total U (and consequently other incompatible elements) has to be concentrated in a thin crustal layer, which certainly contributes to the sampled highland rock types. It is supposed that a partial melting process of the major part of the Moon has extracted the trace elements from the interior into the crust. The patterns of incompatible elements of mare basalts are those expected if a second partial melting process were applied to the trace-element-depleted interior. Some consequences of this model are discussed. A relatively constant Sr and Eu distribution through the whole Moon is inferred, implying a positive Eu-anomaly in the lunar interior.

1992 ◽  
Vol 4 (1) ◽  
pp. 59-69 ◽  
Author(s):  
N.C. Munksgaard ◽  
D.E. Thost ◽  
B.J. Hensen

The late Proterozoic basement of the Porthos Range northern Prince Charles Mountains, east Antarctica, is dominated by a suite of felsic to mafic granulites derived from igneous and, less importantly, sedimentary protoliths. Compositionally, they are broadly similar to granulites occurring along the Mac. Robertson Land coast and southern Prince Charles Mountains. Ultramafic to mafic orthopyroxene' + clinopyroxene granulites with relict igneous layering occur as lenses within the felsic to mafic granulites, and show compositional evidence of a cumulate origin. The felsic to mafic granulites are intruded by several large charnockite bodies that have similarities to the Mawson Charnockite, and may have formed via a two-stage partial melting process. The charnockite and host granulites are chemically very similar, and both may have been derived from a common middle to lower crustal source region. Undepleted K/Rb ratios suggest retention of original chemistry, with variations being due to fractionation processes. Normalized trace element patterns resembling modern-day arc settings suggest that the Porthos Range granulites were possibly generated in a subduction zone environment.


2001 ◽  
Vol 73 (1) ◽  
pp. 99-119 ◽  
Author(s):  
SILVIA R. MEDEIROS ◽  
CRISTINA M. WIEDEMANN-LEONARDOS ◽  
SIMON VRIEND

At the end of the geotectonic cycle that shaped the northern segment of the Ribeira Mobile Belt (Upper Proterozoic to Paleozoic age), a late to post-collisional set of plutonic complexes, consisting of a wide range of lithotypes, intruded all metamorphic units. The Várzea Alegre Intrusive Complex is a post-collisional complex. The younger intrusion consists of an inversely zoned multistage structure envolved by a large early emplaced ring of megaporphyritic charnoenderbitic rocks. The combination of field, petrographic and geochemical data reveals the presence of at least two different series of igneous rocks. The first originated from the partial melting of the mantle. This was previously enriched in incompatible elements, low and intermediate REE and some HFS-elements. A second enrichment in LREE and incompatible elements in this series was due to the mingling with a crustal granitic magma. This mingling process changed the composition of the original tholeiitic magma towards a medium-K calc-alkalic magma to produce a suite of basic to intermediate rock types. The granitic magma from the second high-K, calc-alkalic suite originated from the partial melting of the continental crust, but with strong influence of mantle-derived melts.


2020 ◽  
Vol 5 (2) ◽  
pp. 218-220
Author(s):  
Amir Peyman Soleymani ◽  
Masoud Panjepour ◽  
Mahmood Meratian

Cementite extraordinary mechanical properties have drawn the attention of researchers in recent years. But, the limited methods for the production of this material, led to the production of iron with more than 2.1%wt carbon content beside free carbon by simultaneous thermal-mechanical activation of hematite and graphite mixture at 800°C for 6 hours in the present research. Then, a structure with more than 80%wt cementite was obtained through partial melting process at 1180°C for 25 minutes.


2019 ◽  
Vol 56 (12) ◽  
pp. 1409-1436 ◽  
Author(s):  
Xue-Ming Yang ◽  
Derek Drayson ◽  
Ali Polat

Detailed field observations indicate that Neoarchean S-type granites were emplaced along and (or) proximal to some terrane (tectonic) boundary zones in the western Superior Province, southeastern Manitoba. These S-type granites are characterized by the presence of at least one diagnostic indicator mineral, such as sillimanite, cordierite, muscovite, garnet, and tourmaline. They are medium- to high-K calc-alkaline, moderately to strongly peraluminous (ANKC >1.1), and contain >1% CIPW normative corundum. Compared with more voluminous, older I-type granitoids in tonalite–trondhjemite–granodiorite suites in the region, the S-type granites occur as relatively small intrusions and have high (SiO2 >72 wt.%) contents with a small silica range (SiO2 = 72.2–81.2 wt.%), but a large range of Zr/Hf (17.1–43.8) and Nb/Ta (0.3–16.0) ratios. These geochemical characteristics suggest that the S-type granites were derived from partial melting of heterogeneous sedimentary rocks deposited as synorogenic flysch that underwent burial and crustal thickening during terrane collision. Although the S-type granites display geochemical variations in individual and between different plutons, their low Sr (<400 ppm) and Yb (<2 ppm) contents and low Sr/Y (<40) and La/Yb (<20) ratios are consistent with a partial melting process that left a granulite-facies residue consisting of plagioclase, pyroxene, and ± garnet. The S-type granites display low zircon saturation temperatures (mostly <800 °C) and low emplacement pressures (<300 MPa), similar to strongly peraluminous leucogranites formed in the Himalayas. Therefore, we propose that the Neoarchean S-type granites in the western Superior Province, whose source rocks were deposited between colliding tectonic blocks between 2720 and 2680 Ma, may serve as a geological marker of some Archean terrane boundary zones.


1991 ◽  
Vol 28 (2) ◽  
pp. 172-183 ◽  
Author(s):  
Michel Jébrak ◽  
Luc Harnois

The Taschereau stock occurs north of Timmins and Val-d'Or, Quebec, in the Abitibi greenstone belt of the Superior Province. This late Archean composite pluton is composed mainly of diorite–tonalite–trondhjemite cut by granitic rocks. Gold–molybdenum occurrences are associated with a zone of albite-rich rocks surrounding the granitic rocks. Diabase dykes and shear zones postdate all rock units. Field and geochemical evidence suggests that the Taschereau stock was emplaced diachronously. Trace-element geochemical modelling shows that trace-element abundances (rare-earth elements, Ti, Zr) of Taschereau granitic rocks are consistent with partial melting of preexisting Taschereau tonalitic rocks and implies that these two rock types are not end members of a single magma that evolved through fractional crystallization.


1991 ◽  
Vol 27 (2) ◽  
pp. 1254-1257 ◽  
Author(s):  
J. Kase ◽  
T. Morimoto ◽  
K. Togano ◽  
H. Kumakura ◽  
D.R. Dietderich ◽  
...  

Author(s):  
Takashi S. Kodama ◽  
Yoshiyuki Tanaka ◽  
Miyo Morita ◽  
Takashi Yura ◽  
Yoshimasa Kyogoku ◽  
...  

Basaltic magmas are formed by partial melting of a source rock of peridotitic composition (pyrolite) under upper mantle conditions. Experimental studies of the mineralogy of pyrolite and the melting relations of various basaltic magmas under high-pressure conditions are integrated in an attempt to present an internally consistent model of source composition, derived liquid compositions and residual mantle compositions. The role of a small (0.1 %) content of water in the upper mantle is treated in some detail. The presence of the low velocity zone in the upper mantle is attributed to a small (< 5 %) degree of melting of pyrolite containing approximately 0.1% water. The small liquid fraction present in the low-velocity zone is highly undersaturated olivine nephelinite or olivine melilite nephelinite. Other magma types of direct upper mantle derivation ranging from olivine trachybasalt to olivine melilitite and to tholeiitic picrite are assigned to a genetic grid expressing the depth (pressure) of magma segregation, the degree of partial melting of the source pyrolite, the water content and approximate temperature of the magma. While this genetic model can account for variations in major element abundances and normative mineralogy among basalts, there are variations in abundances of the incompatible elements, particularly K, Rb, Ba, and the rare earths, which are inconsistent with a model invoking a constant source composition for all mantle-derived basalts. Additional factors producing source inhomogeneity, particularly in incompatible element abundances, include the possibility of two-stage melting and of chemical zoning within the low-velocity zone. It is suggested that vertical migration of a fluid or incipient melt phase, enriched in H 2 O, CO 2 and incompatible elements, occurs within the low-velocity zone. The evolution of continental and oceanic rift systems and of the Hawaiian volcanic province is discussed in relation to the depths and conditions of magma genesis derived from the models of magma genesis.


The most important process affecting both major and trace-element concentrations in the mantle and crust is melting producing silicate liquids which then migrate. Another process whose effects are becoming more apparent is the transport of elements by CO 2 - and H 2 O-rich fluids. Due to the relatively small amounts of fluids involved they have but little effect on the major-element abundances but may severely affect minor- and trace-element abundances in their source and the material through which they travel. The Archaean crust was a density filter which reduced the possibility of komatiite or high FeO melts with relative densities greater than about 3.0 from reaching the surface. Those melts retained in the lower crust or at the crust-mantle boundary would have enhanced the possibility of melting in the lower crust. The high FeO melts may have included the Archaean equivalents of alkali basalt whose derivatives may form an important component in the Archaean crust. The occurrence of ultramafic to basic to alkaline magmas in some Archaean greenstone belts is an assemblage most typical of modern ocean-island suites in continental environments. The rock types in the assemblage were modified by conditions of higher heat production during the Archaean and thus greater extents of melting and melting at greater depths. If modern ocean-island suites are associated with mantle plumes, which even now may be an important way to transport heat upward from the deeper mantle, it is suggested that during the Archaean mantle plumes were an important factor in the evolution of the continental crust. It appears that the Archaean continental crust was of comparable thickness to that of the present based on geobarometeric data. If the freeboard concept applied then, this would suggest that plate tectonics was also an active process during the Archaean. If so, it is probably no more realistic to assume that all Archaean greenstone belts had a similar tectonic setting than to assume that all modern occurrences of basic rocks have a common tectonic setting.


Sign in / Sign up

Export Citation Format

Share Document