Emissions of atmospheric trace gases from vegetation burning

Emissions from vegetation fires are recognized as important contributions to biogeochemical cycles of elements. A brief overview is given on emissions of the trace components CO, CH 4 , and NO x determined under various field and laboratory conditions. The influence of these emissions of trace gases on their global turnover is shown to be important. Finally, the emissions due to burning of fuelwood for traditional cooking is compared to the influences of emissions due to wild vegetation fires.

2004 ◽  
Vol 86 (3) ◽  
pp. 171-179 ◽  
Author(s):  
Katayon Saed ◽  
Ahmad Ismail ◽  
Hishamuddin Omar ◽  
Misri Kusnan

2014 ◽  
Author(s):  
Xianxin Li ◽  
Zhangjun Wang ◽  
Xiangqian Meng ◽  
Haijin Zhou ◽  
Libin Du ◽  
...  

2004 ◽  
Vol 61 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Roberval Daiton Vieira ◽  
Angelo Scappa Neto ◽  
Sonia Regina Mudrovitsch de Bittencourt ◽  
Maristela Panobianco

Vigor of soybean [Glycine max (L.) Merrill] seeds can be evaluated by measuring the electrical conductivity (EC) of the seed soaking solution, which has shown a satisfactory relationship with field seedling emergence, but has not had aproper definition of range yet. This work studies the relationship between EC and soybean seedling emergence both in the field and laboratory conditions, using twenty two seed lots. Seed water content, standard germination and vigor (EC, accelerated aging and cold tests) were evaluated under laboratory conditions using -0.03; -0.20; -0.40 and -0.60 MPa matric potentials, and field seedling emergence was also observed. There was direct relationship between EC and field seedling emergence (FE). Under laboratory conditions, a decreasing relationship was found between EC and FE as water content in the substrate decreased. Relationships between these two parameters were also found when -0.03; -0.20 and -0.40 MPa matric potentials were used. EC tests can be used successfully to evaluate soybean seed vigor and identify lots with higher or lower field emergence potential.


1995 ◽  
Vol 99 (14) ◽  
pp. 5001-5008 ◽  
Author(s):  
L. Gregory Huey ◽  
David R. Hanson ◽  
Carleton J. Howard

Sci ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 6
Author(s):  
Jie Cheng

A portable Fourier Transform Spectrometer (B3M-IR) is built and used to measure atmospheric trace gases in the city of Beijing during Olympic Games in 2008. A short description of the instrument is first provided in this paper. A detailed spectral analysis is then presented. The total columns of ozone (O3), carbon monoxide (CO), methane (CH4) and nitrous oxide (N2O) are retrieved from the ground-based solar absorption spectra recorded by the B3M-IR during the Olympic Games. Lacking validation data, only the retrieved total column of O3 is compared with that retrieved by MAX-DOAS, which is deployed at the same station. The mean difference between the two methods of measurement is 6.5%, demonstrating the performance and reliability of B3M-IR.


2016 ◽  
Vol 7 (1) ◽  
pp. 58
Author(s):  
Enrique Navarro ◽  
Cristina Vega ◽  
Fernando Narváez ◽  
Hugo Córdova

This study was carried out in 1993 to evaluate S2 lines from four maize tropical populations improved by reciprocal recurrent selection. These lines were evaluated under field and laboratory conditions, the latter one to determine physiology quality. The main goal was to measure genetic variability within and among populations for traits such as grain yield, vigor and germination and to select the best lines under field and laboratory conditions. The combined analysis of variance showed great genetic variability among the S2 lines within and among populations for grain yield, days to flower, plant and ear height, among others. The maximum genetic variability was observed on the lines from population 43 and pool 23 for most of the traits, although the latter showed a greater genetic variability for grain yield. Besides, it is important to mention that the above populations included the best genotypes for grain yield, germination and vigor. Taking into account the above mentionel agronomic traits, fifteen lines were selected; 2 belong to population 43* pool 20, 2 from pool 19* pool 23, 8 from population 43, and 3 from pool 23. These results confirm the genetic superiority of the lines from populations 43 and pool 23, so that these populations should be recommended for future genetic improvement by reciprocal recurrent procedures.


Sign in / Sign up

Export Citation Format

Share Document