scholarly journals Methanotorris formicicus sp. nov., a novel extremely thermophilic, methane-producing archaeon isolated from a black smoker chimney in the Central Indian Ridge

2004 ◽  
Vol 54 (4) ◽  
pp. 1095-1100 ◽  
Author(s):  
Ken Takai ◽  
Ken H. Nealson ◽  
Koki Horikoshi

A novel extremely thermophilic, methane-producing archaeon was isolated from a black smoker chimney at the Kairei field in the Central Indian Ridge. Cells of this isolate were irregular cocci with several flagella; motility was not observed. Growth was observed between 55 and 83 °C (optimum of 75 °C; 30 min doubling time) and between pH 6·0 and 8·5 (optimum of pH 6·7). The isolate was a strictly anaerobic, methanogenic autotroph capable of using hydrogen and carbon dioxide as sole energy and carbon sources. Formate was utilized as an alternative energy source. The G+C content of the genomic DNA was 33·3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate was most closely related to Methanotorris igneus strain Kol 5T. The isolate, however, could be genetically differentiated from this species by DNA–DNA hybridization analysis and on the basis of its physiological properties. The name Methanotorris formicicus sp. nov. is proposed for this isolate; the type strain is Mc-S-70T (=JCM 11930T=ATCC BAA-687T).

2006 ◽  
Vol 56 (3) ◽  
pp. 625-628 ◽  
Author(s):  
Dores G. Cirne ◽  
Osvaldo D. Delgado ◽  
Sankar Marichamy ◽  
Bo Mattiasson

A strictly anaerobic, mesophilic, endospore-forming, lipolytic bacterium, designated strain R1T, was isolated from bovine rumen fluid and characterized. Cells of this isolate were Gram-positive, non-motile rods that formed spherical terminal spores. The overall biochemical and physiological characteristics indicated that this strain should be placed in the genus Clostridium. The strain grew at temperatures between 25 and 47 °C (optimum, 37 °C), at pH between 5·0 and 8·5 (optimum pH 5·5–7·0) and in NaCl concentrations of 0–3 % (w/v). The isolate was not able to utilize glucose or other carbohydrates as carbon sources. The DNA G+C content was 31·2 mol%. Sequence analysis of the 16S rRNA gene of R1T revealed that it has the closest match (98 % similarity) with Clostridium tetanomorphum DSM 4474T. The highest levels of DNA–DNA relatedness of the isolate were 61·9 and 54·3 % with Clostridium pascui DSM 10365T and C. tetanomorphum DSM 4474T, respectively. Based on 16S rRNA gene sequence similarity, phylogenetic analysis, DNA G+C content, DNA–DNA hybridization data and distinct phenotypic characteristics, strain R1T (=DSM 17049T=CCUG 50446T) was classified in the genus Clostridium, as a member of a novel species, for which the name Clostridium lundense sp. nov. is proposed.


2006 ◽  
Vol 56 (11) ◽  
pp. 2553-2557 ◽  
Author(s):  
Yoko Katayama ◽  
Yoshihito Uchino ◽  
Ann P. Wood ◽  
Donovan P. Kelly

The transfer of Thiobacillus delicatus to the genus Thiomonas as a distinct species, Thiomonas delicata (type strain NBRC 14566T), is confirmed by its morphological and physiological properties, DNA–DNA hybridization and the grouping of its 16S rRNA gene sequence with those of other species of the genus. An emended formal description of Thiomonas delicata is given. The status of Thiomonas cuprina DSM 5495T as a member of the genus is reconsidered.


2006 ◽  
Vol 56 (10) ◽  
pp. 2349-2351 ◽  
Author(s):  
A. I. Slobodkin ◽  
T. G. Sokolova ◽  
A. M. Lysenko ◽  
J. Wiegel

Similarities in phylogeny and metabolic properties between the type species of two monospecific genera of thermophilic anaerobic bacteria, Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens, and analysis of their recently available 16S rRNA gene sequences warranted clarification of their taxonomic positions. We have determined that the value of DNA–DNA hybridization between the type strains is 53 %. Additional physiological studies revealed that C. hydrogenoformans Z-2901T is capable of Fe(III) reduction with H2 as an electron donor and ferrihydrite as an electron acceptor. T. ferrireducens JW/AS-Y7T is able to grow and utilize CO with ferrihydrite as an electron acceptor without hydrogen or acetate production. We therefore reclassify Thermoterrabacterium ferrireducens as Carboxydothermus ferrireducens comb. nov. (type strain JW/AS-Y7T=DSM 11255T=VKM B-2392T). The description of the genus Carboxydothermus is emended to include such important physiological properties as growth on organic compounds and capacity for Fe(III) reduction.


2007 ◽  
Vol 57 (7) ◽  
pp. 1612-1618 ◽  
Author(s):  
Elena V. Pikuta ◽  
Damien Marsic ◽  
Takashi Itoh ◽  
Asim K. Bej ◽  
Jane Tang ◽  
...  

A hyperthermophilic, sulfur-reducing, organo-heterotrophic archaeon, strain OGL-20PT, was isolated from ‘black smoker’ chimney material from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge (36.2°N, 33.9°W). The cells of strain OGL-20PT have an irregular coccoid shape and are motile with a single flagellum. Growth was observed within a pH range of 5.0−8.5 (optimum pH 7.0), an NaCl concentration range of 1–5 % (w/v) (optimum 3 %) and a temperature range of 55–94 °C (optimum 83–85 °C). The novel isolate is strictly anaerobic and obligately dependent upon elemental sulfur as an electron acceptor, but it does not reduce sulfate, sulfite, thiosulfate, Fe(III) or nitrate. Proteolysis products (peptone, bacto-tryptone, Casamino acids and yeast extract) are utilized as substrates during sulfur reduction. Strain OGL-20PT is resistant to ampicillin, chloramphenicol, kanamycin and gentamicin, but sensitive to tetracycline and rifampicin. The G+C content of the DNA is 52.9 mol%. The 16S rRNA gene sequence analysis revealed that strain OGL-20PT is closely related to Thermococcus coalescens and related species, but no significant homology by DNA–DNA hybridization was observed between those species and the new isolate. On the basis of physiological and molecular properties of the new isolate, we conclude that strain OGL-20PT represents a new separate species within the genus Thermococcus, for which we propose the name Thermococcus thioreducens sp. nov. The type strain is OGL-20PT (=JCM 12859T=DSM 14981T=ATCC BAA-394T).


Author(s):  
Ling-Fei Lu ◽  
Yang Yang ◽  
Li-Juan Chai ◽  
Zhen-Ming Lu ◽  
Li-Qiang Zhang ◽  
...  

A novel Gram-positive, non-motile, non-flagellated, strictly anaerobic, non-spore-forming and dumbbell-shaped, coccoid- or chain-shaped bacterium, designated strain LZLJ-3T, was isolated from a mud fermentation cellar which has been used for the production of Chinese strong-flavour liquor for over 100 years. Strain LZLJ-3T grew at 20–40 °C (optimum, 37 °C), at pH 6.0–8.0 (optimum, pH 8.0) and with NaCl concentrations up to 1 % (w/v; optimum, 0 %). Phylogenetic trees established based on 16S rRNA gene sequences showed that strain LZLJ-3T belonged to the genus Blautia of the family Lachnospiraceae, with the highest sequence similarity to Blautia stercoris GAM6-1T (91.7 %) and Blautia faecicola KGMB01111T (91.7 %). Comparative genome analysis showed that the orthologous average nucleotide identity (OrthoANI) and genome-to-genome distance (GGD) values between strain LZLJ-3T and B. stercoris GAM6-1T were respectively 69.1 and 22.9 %; the OrthoANI and GGD values between strain LZLJ-3T and B. faecicola KGMB01111T were respectively 70.86 and 36 % . The DNA G+C content of strain LZLJ-3T genome was 42.1 mol%. The predominant celluar fatty acids (>10 %) of strain LZLJ-3T were C16 : 0 FAME (27.9 %), C14 : 0 FAME (17.6 %) and C16 : 0 DMA (13.0 %). Arabinose, glucose and maltose could be utilized by strain LZLJ-3T as sole carbon sources for growth, with weak utilization of raffinose and l-fucose. API ZYM analysis gave positive reactions with α-galactosidase, β-galactosidase, α-glucosidase and β-glucosidase. The major end product of glucose fermentation was acetic acid. Based on the results of phenotypic, genotypic and phylogenetic analyses, strain LZLJ-3T is considered to represent a novel species of Blautia , for which the name Blautia liquoris sp. nov. is proposed. The type strain is LZLJ-3T (=KCTC 25163T=CGMCC 1.5299T=JCM 34225T).


2004 ◽  
Vol 54 (1) ◽  
pp. 227-233 ◽  
Author(s):  
H. Moussard ◽  
S. L'Haridon ◽  
B. J. Tindall ◽  
A. Banta ◽  
P. Schumann ◽  
...  

A thermophilic, marine, anaerobic, chemolithoautotrophic, sulfate-reducing bacterium, strain CIR29812T, was isolated from a deep-sea hydrothermal vent site at the Kairei vent field on the Central Indian Ridge. Cells were Gram-negative motile rods that did not form spores. The temperature range for growth was 55–80 °C, with an optimum at 70 °C. The NaCl concentration range for growth was 10–35 g l−1, with an optimum at 25 g l−1. The pH range for growth was 6–6·7, with an optimum at approximately pH 6·25. H2 and CO2 were the only electron donor and carbon source found to support growth of the strain. However, several organic compounds were stimulatory for growth. Sulfate was used as electron acceptor, whereas elemental sulfur, thiosulfate, sulfite, cystine, nitrate and fumarate were not. No fermentative growth was observed with malate, pyruvate or lactate. The phenotypic characteristics of strain CIR29812T were similar to those of Thermodesulfobacterium hydrogeniphilum, a recently described thermophilic, chemolithoautotrophic sulfate-reducer. However, phylogenetic analyses of the 16S rRNA gene sequences showed that the new isolate was distantly related to members of the family Thermodesulfobacteriaceae (similarity values of less than 90 %). The chemotaxonomic data (fatty acids and polar lipids composition) also indicated that strain CIR29812T could be distinguished from Thermodesulfobacterium commune, the type species of the type genus of the family Thermodesulfobacteriaceae. Finally, the G+C content of the genomic DNA of strain CIR29812T (46·0 mol%) was not in the range of values obtained for members of this family. On the basis of phenotypic, chemotaxonomic and genomic features, it is proposed that strain CIR29812T represents a novel species of a new genus, Thermodesulfatator, of which Thermodesulfatator indicus is the type species. The type strain is CIR29812T (=DSM 15286T=JCM 11887T).


2004 ◽  
Vol 54 (6) ◽  
pp. 2241-2244 ◽  
Author(s):  
Joanne M. Santini ◽  
Illo C. A. Streimann ◽  
Rachel N. vanden Hoven

A strictly anaerobic arsenate-respiring bacterium isolated from a gold mine in Bendigo, Victoria, Australia, belonging to the genus Bacillus is described. Cells are Gram-positive, motile rods capable of respiring with arsenate and nitrate as terminal electron acceptors using a variety of substrates, including acetate as the electron donor. Reduction of arsenate to arsenite is catalysed by a membrane-bound arsenate reductase that displays activity over a broad pH range. Synthesis of the enzyme is regulated; maximal activity is obtained when the organism is grown with arsenate as the terminal electron acceptor and no activity is detectable when it is grown with nitrate. Mass of the catalytic subunit was determined to be approximately 87 kDa based on ingel activity stains. The closest phylogenetic relative, based on 16S rRNA gene sequence analysis, is Bacillus arseniciselenatis, but DNA–DNA hybridization experiments clearly show that strain JMM-4T represents a novel Bacillus species, for which the name Bacillus macyae sp. nov. is proposed. The type strain is JMM-4T (=DSM 16346T=JCM 12340T).


2010 ◽  
Vol 60 (6) ◽  
pp. 1256-1260 ◽  
Author(s):  
Seong Hae Seo ◽  
Soon Dong Lee

A novel actinomycete was isolated from soil of a rock surface collected from the peak of Darangshi Oreum (Small Mountain) in Jeju, Republic of Korea. Phylogenetic analyses based on 16S rRNA gene sequences demonstrated that strain DLS-44T belonged to the genus Dactylosporangium, with the type strains of Dactylosporangium roseum (99.1 % sequence similarity) and Dactylosporangium fulvum (99.0 %) as the nearest phylogenetic relatives. Substrate mycelium was abundant, irregularly branched, twisted and vivid orange–yellow in colour. Aerial mycelium was not produced on most media tested. Finger-shaped sporangia and globose bodies were formed directly from the vegetative mycelium. The combination of morphological and chemotaxonomic characteristics supported assignment of the actinomycete to the genus Dactylosporangium. Strain DLS-44T could be distinguished clearly from all type strains of the genus based on its physiological properties (utilization of methyl α-d-mannoside and glycerol, nitrate reduction and growth at 20 °C and pH 9.1) and some chemotaxonomic characteristics (absence of unsaturated fatty acids). DNA–DNA relatedness values between strain DLS-44T and its closest phylogenetic relatives were 12.2–14.8 % with D. roseum DSM 43916T and 2.5–3.6 % with D. fulvum IMSNU 22055T. On the basis of phenotypic, phylogenetic and DNA–DNA hybridization data, strain DLS-44T represents a novel species of the genus Dactylosporangium, for which the name Dactylosporangium darangshiense sp. nov. is proposed. The type strain is strain DLS-44T (=KCTC 19560T =DSM 45260T).


Sign in / Sign up

Export Citation Format

Share Document