scholarly journals Burkholderia aspalathi sp. nov., isolated from root nodules of the South African legume Aspalathus abietina Thunb

2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1906-1912 ◽  
Author(s):  
Natasha R. Mavengere ◽  
Allan G. Ellis ◽  
Johannes J. Le Roux

During a study to investigate the diversity of rhizobia associated with native legumes in South Africa’s Cape Floristic Region, a Gram-negative bacterium designated VG1CT was isolated from the root nodules of Aspalathus abietina Thunb. Based on phylogenetic analyses of the 16S rRNA and recA genes, VG1CT belongs to the genus Burkholderia , with the highest degree of sequence similarity to the type strain of Burkholderia sediminicola (98.5 % and 98 %, respectively). The DNA G+C content of strain VG1CT was 60.1 mol%, and DNA–DNA relatedness values to the type strain of closely related species were found to be substantially lower than 70 %. As evidenced by results of genotypic, phenotypic and chemotaxonomic tests provided here, we conclude that isolate VG1CT represents a novel rhizosphere-associated species in the genus Burkholderia , for which the name Burkholderia aspalathi sp. nov. is proposed, with the type strain VG1CT ( = DSM 27239T = LMG 27731T).

Author(s):  
Fenfa Li ◽  
Qingyi Xie ◽  
Shuangqing Zhou ◽  
Fandong Kong ◽  
Yun Xu ◽  
...  

Strain HNM0947T, representing a novel actinobacterium, was isolated from the coral Galaxea astreata collected from the coast of Wenchang, Hainan, China. The strain was found to have morphological and chemotaxonomic characteristics consistent with the genus Nocardiopsis . The organism formed abundant fragmented substrate mycelia and aerial mycelia which differentiated into non-motile, rod-shaped spores. Whole-cell hydrolysates contained meso-diaminopimelic acid and no diagnostic sugars. The major menaquinones were MK-10(H8), MK-10(H6) and MK-10(H4). The major phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids were iso-C16:0, anteiso-C17:0, C18:0, C18:0 10-methyl (TBSA) and anteiso-C15:0. The G+C content was 71.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HNM0947T belonged to the genus Nocardiopsis and shared highest sequence similarity to Nocardiopsis salina YIM 90010T (98.8%), Nocardiopsis xinjiangensis YIM 90004T(98.5%) and Nocardiopsis kunsanensis DSM 44524T (98.3%). The strain HNM0947T was distinguished from its closest type strain by low average nucleotide identity (90.8%) and dDDH values (60.4%) respectively. Based on genotypic, chemotaxonomic and phenotypic characteristics, it was concluded that strain HNM0947T represents a novel species of the genus Nocardiopsis whose name was proposed as Nocardiopsis coralli sp. nov. The type strain was HNM0947T (=CCTCC AA 2020015 T=KCTC 49525 T).


2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4016-4020 ◽  
Author(s):  
Maki Teramoto ◽  
Miyuki Nishijima

A Gram-stain-negative, non-motile, mesophilic, aerobic, rod-shaped bacterium, designated strain 2-3T, was isolated from surface seawater at Muroto city, Kochi prefecture, Japan. This strain grew well with starch. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain fell within the family Rhodobacteraceae and that the strain was related most closely to the genus Pacificibacter (94.0 % sequence similarity to the type strain). The DNA G+C content was 52.4 mol%. The major fatty acids were C18 : 1ω7c, C14 : 0 and C16 : 0. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified lipid, one unidentified aminolipid and one unidentified phospholipid. The major isoprenoid quinone was Q-10. Strain 2-3T did not grow at 4 or 35 °C, while the type strain of the type species of the genus Pacificibacter grows at both temperatures. From the taxonomic data obtained in this study, it is proposed that strain 2-3T be placed into a novel genus and species named Amylibacter marinus gen. nov., sp. nov. in the family Rhodobacteraceae . The type strain of Amylibacter marinus is 2-3T ( = NBRC 110140T = LMG 28364T).


Author(s):  
Juan Zhou ◽  
Yuyuan Huang ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
...  

Four aerobic, Gram-stain-positive, rod-shaped bacteria (HY60T, HY54, HY82T and HY89) were isolated from bat faeces of Hipposideros and Rousettus species collected in PR China. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the four novel strains formed two separate but adjacent subclades close to Microbacterium agarici CGMCC 1.12260T (97.6–97.7 % similarity), Microbacterium humi JCM 18706T (97.3–97.5 %) and Microbacterium lindanitolerans JCM 30493T (97.3–97.4 %). The 16S rRNA gene sequence similarity was 98.3 % between strains HY60T and HY82T, and identical within strain pairs HY60T/HY54 and HY82T/HY89. The DNA G+C contents of strains HY60T and HY82T were 61.9 and 63.3 mol%, respectively. The digital DNA–DNA hybridization and average nucleotide identity values between each novel strain and their closest relatives were all below the 70 % and 95–96 % thresholds for species delimitation, respectively. All four novel strains contained anteiso-C15 : 0, anteiso-C17 : 0, iso-C16 : 0 and iso-C15 : 0 as the main fatty acids, MK-11 and MK-12 as the major respiratory quinones, and diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid as the predominant polar lipids. The cell-wall peptidoglycan was of B type and contained alanine, glutamate, glycine and ornithine. The acyl type of the muramic acid was glycolyl. The whole-cell sugars were rhamnose and ribose. Based on the foregoing polyphasic analyses, it was concluded that the four uncharacterized strains represented two novel species of the genus Microbacterium , for which the names Microbacterium chengjingii sp. nov. [type strain HY60T (=CGMCC 1.17468T=GDMCC 1.1951T=KACC 22102T)] and Microbacterium fandaimingii sp. nov. [type strain HY82T (=CGMCC 1.17469T=GDMCC 1.1949T=KACC 22101T)] are proposed, respectively.


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 268-273 ◽  
Author(s):  
Malka Halpern ◽  
Svetlana Fridman ◽  
Yana Aizenberg-Gershtein ◽  
Ido Izhaki

Pseudomonas flectens Johnson 1956, a plant-pathogenic bacterium on the pods of the French bean, is no longer considered to be a member of the genus Pseudomonas sensu stricto. A polyphasic approach that included examination of phenotypic properties and phylogenetic analyses based on 16S rRNA, rpoB and atpD gene sequences supported the transfer of Pseudomonas flectens Johnson 1956 to a new genus in the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Two strains of Phaseolibacter flectens were studied (ATCC 12775T and LMG 2186); the strains shared 99.8 % sequence similarity in their 16S rRNA genes and the housekeeping gene sequences were identical. Strains of Phaseolibacter flectens shared 96.6 % or less 16S rRNA gene sequence similarity with members of different genera in the family Enterobacteriaceae and only 84.7 % sequence similarity with Pseudomonas aeruginosa LMG 1242T, demonstrating that they are not related to the genus Pseudomonas . As Phaseolibacter flectens formed an independent phyletic lineage in all of the phylogenetic analyses, it could not be affiliated to any of the recognized genera within the family Enterobacteriaceae and therefore was assigned to a new genus. Cells were Gram-negative, straight rods, motile by means of one or two polar flagella, fermentative, facultative anaerobes, oxidase-negative and catalase-positive. Growth occurred in the presence of 0–60 % sucrose. The DNA G+C content of the type strain was 44.3 mol%. On the basis of phenotypic properties and phylogenetic distinctiveness, Pseudomonas flectens Johnson 1956 is transferred to the novel genus Phaseolibacter gen. nov. as Phaseolibacter flectens gen. nov., comb. nov. The type strain of Phaseolibacter flectens is ATCC 12775T  = CFBP 3281T  = ICMP 745T  = LMG 2187T  = NCPPB 539T.


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3395-3401 ◽  
Author(s):  
Krisle da Silva ◽  
Sofie E. De Meyer ◽  
Luc F. M. Rouws ◽  
Eliane N. C. Farias ◽  
Marco A. O. dos Santos ◽  
...  

Root-nodule bacteria were isolated from Inga laurina (Sw.) Willd. growing in the Cerrado Amazon region, State of Roraima, Brazil. The 16S rRNA gene sequences of six strains (BR 10250T, BR 10248, BR 10249, BR 10251, BR 10252 and BR 10253) showed low similarities with currently described species of the genus Bradyrhizobium . Phylogenetic analyses of sequences of five housekeeping genes (dnaK, glnII, gyrB, recA and rpoB) revealed Bradyrhizobium iriomotense EK05T to be the closest type strain (97.4 % sequence similarity or less). Chemotaxonomic data, including fatty acid profiles [with the major components C16 : 0 and summed feature 8 (C18 : 1ω6c/C18 : 1ω7c)], the slow growth rate and carbon compound utilization patterns supported the assignment of our strains to the genus Bradyrhizobium . Results from DNA–DNA hybridizations and physiological traits differentiated our strains from the closest related species of the genus Bradyrhizobium with validly published names. Sequences of symbiosis-related genes for nodulation (nodC) and nitrogen fixation (nifH) grouped together with those of B. iriomotense EK05T and Bradyrhizobium sp. strains BR 6610 (used as a commercial inoculant for Inga marginata in Brazil) and TUXTLAS-10 (previously observed in Central America). Based on these data, the six strains represent a novel species, for which the name Bradyrhizobium ingae sp. nov. is proposed. The type strain is BR 10250T ( = HAMBI 3600T).


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2210-2216 ◽  
Author(s):  
Yun-Jiao Zhang ◽  
Man Jia ◽  
Yong-Chun Ma ◽  
Kai-Yang Lu ◽  
Fei Tian ◽  
...  

A Gram-negative, moderately halophilic, strictly aerobic strain, designated YIM 95345T, was isolated from a soil sample of a hypersaline mine in Yunnan province, PR China, and subjected to a polyphasic taxonomic study. Strain YIM 95345T grew at 15–45 °C (optimum 30–35 °C), 3.0–23.0 % (w/v) NaCl (optimum 10.0–11.0 %, w/v) and pH 6.0–9.0 (optimum pH 7.0–8.0). Phylogenetic analyses based on 16S rRNA gene sequences revealed that the organism belongs to the genus Aquisalimonas and exhibited sequence similarity of 96.6 % to the sole type strain Aquisalimonas asiatica CG12T. The predominant isoprenoid quinone was Q-8 and the major fatty acids were C16 : 0, C19 : 0 cyclo ω8c and C18 : 1ω7c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, three aminolipids and three unidentified phospholipids. The G+C content of the genomic DNA was 59.4 mol%. Based on the results of our comparative phylogenetic, chemotaxonomic and physiological analyses, the new isolate is assigned to a novel species of the genus Aquisalimonas , for which the name Aquisalimonas halophila sp. nov. is proposed, with the type strain YIM 95345T ( = DSM 25902T = CCTCC AB 2012043T).


2019 ◽  
Vol 69 (4) ◽  
pp. 1041-1046 ◽  
Author(s):  
Hyeon-Woo Koh ◽  
Myeong-Sub Song ◽  
Kyoung-Tag Do ◽  
Hongik Kim ◽  
Soo-Je Park

A Gram-stain-negative, motile bacterium, designated strain YE3T, was isolated from activated sludge obtained from a municipal wastewater treatment plant in Daejeon Metropolitan City, Republic of Korea. The cells were oxidase- and catalase-positive, and grew under aerobic conditions at 10–40 °C (optimum, 30 °C), with 1.0–8.0 % (w/v) NaCl (1.0 %) and at pH 5.5–9.0 (pH 7.0). Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain YE3T was most closely related to Pusillimonas harenae KACC 14927T (98.2 % sequence similarity) and Pusillimonas ginsengisoli KCTC 22046T (98.0 %). DNA–DNA relatedness values for strain YE3T and P. harenae KACC 14927T, P. ginsengisoli KCTC 22046T and P. soli KCTC 22455T were 28.7±2.27 %, 21.3±1.16 %, and 14.0±0.67 %, respectively. The genomic G+C content of the type strain YE3T was 59.3 mol%, as determined by whole-genome sequencing. The dominant fatty acids were C16 : 0 (39.2 %) and C17 : 0cyclo (37.5 %). The major polar lipids of strain YE3T were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Two aminophospholipids and four unidentified lipids were also detected. Furthermore, strain YE3T was able to oxidize thiosulfate under heterotrophic conditions. Based on the phenotypic, genotypic, chemotaxonomic and phylogenetic analyses, strain YE3T represents a novel species of the genus Pusillimonas , for which the name Pusillimonas thiosulfatoxidans sp. nov. is proposed. The type strain is YE3T (=KCTC 62737T=NBRC 113113T).


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3915-3919 ◽  
Author(s):  
Xing-Xing Qiu ◽  
Mei-Lin Zhao ◽  
Dong Han ◽  
Wen-Jiao Zhang ◽  
Mike L. Dyall-Smith ◽  
...  

Members of the haloarchaeal genera Halosarcina and Halogeometricum (family Halobacteriaceae ) are closely related to each other and show 96.6–98 % 16S rRNA gene sequence similarity. This is higher than the accepted threshold value (95 %) to separate two genera, and a taxonomic study using a polyphasic approach of all four members of the two genera was conducted to clarify their relationships. Polar lipid profiles indicated that Halogeometricum rufum RO1-4T, Halosarcina pallida BZ256T and Halosarcina limi RO1-6T are related more to each other than to Halogeometricum borinquense CGMCC 1.6168T. Phylogenetic analyses using the sequences of three different genes (16S rRNA gene, rpoB′ and EF-2) strongly supported the monophyly of these four species, showing that they formed a distinct clade, separate from the related genera Halopelagius , Halobellus , Haloquadratum , Haloferax and Halogranum . The results indicate that the four species should be assigned to the same genus, and it is proposed that Halosarcina pallida and Halosarcina limi be transferred to the genus Halogeometricum as Halogeometricum pallidum comb. nov. (type strain, BZ256T = KCTC 4017T = JCM 14848T) and Halogeometricum limi comb. nov. (type strain, RO1-6T = CGMCC 1.8711T = JCM 16054T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3520-3525 ◽  
Author(s):  
Ying-Qian Kang ◽  
Hong Ming ◽  
Tohru Gonoi ◽  
Yuru Chen ◽  
Yu Cao ◽  
...  

A second novel clinical actinobacterial strain, designated IFM 10348T, was isolated from the sputum of the same Japanese patient with bacterial pneumonia from whom the type strain of Gordonia araii had been isolated. The strains differed in phylogenetic position and drug-resistance profiles. The taxonomic position of strain IFM 10348T was clarified by phenotypic, chemotaxonomic and phylogenetic studies. Phylogenetic analyses based on 16S rRNA gene sequences clearly demonstrated that strain IFM 10348T occupied a distinct clade within the genus Gordonia and was related closely to Gordonia malaquae DSM 45064T and Gordonia hirsuta DSM 44140T (97.3 and 97.1 % similarities, respectively). Strain IFM 10348T was also clearly differentiated from G. malaquae DSM 45064T and G. hirsuta DSM 44140T based on gyrB and secA1 gene sequence similarity values. Strain IFM 10348T had MK-9(H2) as the predominant menaquonine, contained meso-diaminopimelic acid, arabinose, galactose and glucosamine as cell-wall components, and contained C18 : 1ω9c, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0 as the major cellular fatty acids. Mycolic acids were present. The DNA G+C content of strain IFM 10348T was 68.0 mol%. DNA–DNA relatedness data coupled with the combination of genotypic and phenotypic data indicated that strain IFM 10348T represents a novel species of the genus Gordonia , for which the name Gordonia iterans sp. nov. is proposed. The type strain is IFM 10348T ( = CCTCC M2011245T = NCCB 100436T).


2013 ◽  
Vol 63 (Pt_12) ◽  
pp. 4626-4632 ◽  
Author(s):  
Dong-Wook Hyun ◽  
Na-Ri Shin ◽  
Min-Soo Kim ◽  
Pil Soo Kim ◽  
Joon Yong Kim ◽  
...  

A novel Gram-negative, aerobic, non-motile and rod-shaped bacterium, designated strain WM67T, was isolated from the gut of an abalone (Haliotis discus hannai) collected from the northern coast of Jeju Island in Korea. Phylogenetic analyses based on the 16S rRNA gene sequence indicated that strain WM67T clustered in the genus Pseudoruegeria , and the highest sequence similarity was shared with Pseudoruegeria lutimaris (98.0 % similarity to the type strain). Optimal growth of the isolate occurred at 30 °C, pH 7–8 and with 1 % (w/v) NaCl. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. Ubiquinone Q-10 was the major respiratory quinone. The polar lipids of strain WM67T comprised phosphatidylserine, phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, an unidentified glycolipid and three unidentified lipids. The genomic DNA G+C content was 66.5 mol%. DNA–DNA hybridization indicated <17 % genomic relatedness to other members of the genus Pseudoruegeria . The physiological, biochemical, chemotaxonomic and genotypic analyses indicated that strain WM67T represents a novel species of Pseudoruegeria , for which the name Pseudoruegeria haliotis sp. nov. is proposed. The type strain is WM67T ( = KACC 17214T = JCM 18872T).


Sign in / Sign up

Export Citation Format

Share Document