scholarly journals Streptomonospora halotolerans sp. nov., an actinomycete isolated from soil

2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3183-3189 ◽  
Author(s):  
Junwei Zhao ◽  
Lifeng Guo ◽  
Chongxi Liu ◽  
Pengyu Sun ◽  
Jiansong Li ◽  
...  

A novel actinomycete, designated strain NEAU-Jh2-17T, was isolated from muddy soil collected from a riverbank in Jilin Province, northern China, and characterized using a polyphasic approach. The 16S rRNA gene sequence of strain NEAU-Jh2-17T showed highest similarity to those of Streptomonospora nanhaiensis 12A09T (99.26 %), Nocardiopsis rosea YIM 90094T (97.31 %), Streptomonospora halophila YIM 91355T (97.24 %) and Streptomonospora arabica S186T (97.02 %). Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strain NEAU-Jh2-17T fell within a cluster consisting of the type strains of species of the genus Streptomonospora and formed a stable clade with S. nanhaiensis 12A09T in trees generated with two algorithms. Key morphological and chemotaxonomic properties also confirmed the affiliation of strain NEAU-Jh2-17T to the genus Streptomonospora. The cell wall contained meso-diaminopimelic acid as the diagnostic diamino acid and whole-cell hydrolysates contained glucose, ribose and galactose. The polar lipids were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylinositol mannoside (PIM), two unknown phospholipids (PLs) and two unknown glycolipids (GLs). The predominant menaquinones were MK-10(H2), MK-10(H8), MK-10(H6) and MK-10(H4). Major fatty acids were C18 : 0 10-methyl, anteiso-C17 : 0, C16 : 0 10-methyl, iso-C15 : 0, C17 : 0 10-methyl and C18 : 0. The DNA G+C content was 71.82 mol%. However, a combination of DNA–DNA hybridization results and some phenotypic characteristics demonstrated that strain NEAU-Jh2-17T could be distinguished from its closely related relatives. Therefore, strain NEAU-Jh2-17T is considered to represent a novel species of the genus Streptomonospora, for which the name Streptomonospora halotolerans sp. nov. is proposed. The type strain is NEAU-Jh2-17T ( = CGMCC 4.7218T = JCM 30347T).

2011 ◽  
Vol 61 (11) ◽  
pp. 2763-2768 ◽  
Author(s):  
Keun Sik Baik ◽  
Han Na Choe ◽  
Seong Chan Park ◽  
Eun Mi Kim ◽  
Chi Nam Seong

A rod-shaped, endospore-forming, Gram-reaction-positive bacterium, designated strain WPCB018T, was isolated from a fresh water sample collected from Woopo wetland, Korea. The isolate was identified as a member of the genus Paenibacillus on the basis of phenotypic characteristics and phylogenetic inference based on 16S rRNA gene sequence analysis. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and unknown aminophospholipids. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15 : 0 (32.2 %), C16 : 0 (20.1 %) and C18 : 0 (18.1 %). The DNA G+C content was 56.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain WPCB018T belongs to a cluster comprising species of the genus Paenibacillus, its closest neighbours being Paenibacillus humicus PC-147T (97.5 %) and Paenibcillus pasadenensis SAFN-007T (96.2 %). Genomic DNA–DNA hybridizations performed with strain WPCB018T and type strains of the species P. humicus, P. pinihumi, P. phyllosphaerae, P. pasadenensis and P. tarimensis showed relatedness values of only 10, 17, 18, 19 and 20 %, respectively. On the basis of phenotypic, molecular and genetic evidence, strain WPCB018T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus wooponensis sp. nov. is proposed. The type strain of the novel species is WPCB018T ( = KCTC 13280T  = JCM 16350T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4369-4373 ◽  
Author(s):  
Lili Niu ◽  
Mengjie Xiong ◽  
Tianyi Tang ◽  
Lei Song ◽  
Xing Hu ◽  
...  

A novel Gram-reaction-positive, aerobic and non-spore-forming rod-shaped bacterial strain, YS17T, was isolated from ripened Pu′er tea. Growth of the strain was observed at 15–50 °C (optimum 30–37 °C) and at pH 5.5–10.5 (optimum 6.0–9.5). Phylogenetic analysis of 16S rRNA gene sequences indicated that the strain represented a member of the genus Aeromicrobium. The strains most closely related to YS17T were Aeromicrobium erythreum DSM 8599T, Aeromicrobium alkaliterrae JCM 13518T and Aeromicrobium ginsengisoli JCM 14732T, with 16S rRNA gene sequence similarities of 96.8, 96.8 and 96.7 %, respectively. DNA–DNA hybridization of YS17T with the type strains of the most closely related species, A. erythreum DSM 8599T, A. alkaliterrae JCM 13518T and A. ginsengisoli JCM 14732T, yielded reassociation values of 10.9, 16.8 and 10.9 %, respectively. The diagnostic diamino acid of the cell wall peptidoglycan was ll-diaminopimelic acid. The predominant menaquinones were menaquinone MK-9(H4) (76 %) and MK-8(H4) (17 %). The major fatty acids were C16 : 0, 10-methyl C18 : 0 and C18 : 1ω9c. The DNA G+C content of YS17T was 66 mol%. YS17T could be differentiated from recognized species of the genus Aeromicrobium on the basis of phenotypic characteristics, chemotaxonomic differences, phylogenetic analysis and DNA–DNA hybridization data. On the basis of evidence from the polyphasic analyses performed as part of this study a novel species, Aeromicrobium camelliae sp. nov., is proposed, with strain YS17T ( = CGMCC 1.12942T = JCM 30952T) as the type strain.


2007 ◽  
Vol 57 (1) ◽  
pp. 136-140 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Choong-Hwan Lee ◽  
Tae-Kwang Oh

A Gram-positive, rod-shaped or coccoid bacterial strain, DS-51T, was isolated from a soil in Dokdo, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain DS-51T grew optimally at pH 8.0 and 30 °C without NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DS-51T forms a distinct line of descent within the radiation enclosed by the genus Nocardioides. The chemotaxonomic properties of strain DS-51T were consistent with those of the genus Nocardioides: the cell-wall peptidoglycan type was based on ll-2,6-diaminopimelic acid, MK-8(H4) was the predominant menaquinone and iso-C16 : 0 was the major fatty acid. The DNA G+C content was 71.1 mol%. The 16S rRNA gene sequence of strain DS-51T had similarity levels of 92.5–95.1 % with the sequences of the type strains of Nocardioides species. Strain DS-51T could be distinguished from other Nocardioides species by differences in some phenotypic characteristics. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain DS-51T represents a novel species of the genus Nocardioides, for which the name Nocardioides insulae sp. nov. is proposed. The type strain is DS-51T (=KCTC 19180T=DSM 17944T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 491-496 ◽  
Author(s):  
Gareth J. Everest ◽  
Sarah M. Curtis ◽  
Filomena De Leo ◽  
Clara Urzì ◽  
Paul R. Meyers

A novel actinobacterium, strain BC637T, was isolated from a biodeteriogenic biofilm sample collected in 2009 in the Saint Callixstus Roman catacomb. The strain was found to belong to the genus Kribbella by analysis of the 16S rRNA gene. Phylogenetic analysis using the 16S rRNA gene and the gyrB, rpoB, relA, recA and atpD concatenated gene sequences showed that strain BC637T was most closely related to the type strains of Kribbella lupini and Kribbella endophytica . DNA–DNA hybridization experiments confirmed that strain BC637T is a genomic species that is distinct from its closest phylogenetic relatives, K. endophytica DSM 23718T (63 % DNA relatedness) and K. lupini LU14T (63 % DNA relatedness). Physiological comparisons showed that strain BC637T is phenotypically distinct from the type strains of K. endophytica and K. lupini . Thus, strain BC637T represents the type strain of a novel species, for which the name Kribella italica sp. nov. is proposed ( = DSM 28967T = NRRL B-59155T).


2006 ◽  
Vol 56 (8) ◽  
pp. 1783-1787 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
Jung-Kee Lee ◽  
Seo-Youn Jung ◽  
Jung-Ae Kim ◽  
Ha-Kun Kim ◽  
...  

A Gram-positive, rod- or coccoid-shaped and N-hexanoyl-l-homoserine lactone-degrading bacterial strain, A2-4T, was isolated from a soil in Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain A2-4T grew optimally at pH 7.0–8.0 and 30 °C without NaCl. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain A2-4T is most closely related to members of the genus Nocardioides. Strain A2-4T possessed chemotaxonomic properties indicative of members of the genus Nocardioides; the cell-wall peptidoglycan type was based on ll-diaminopimelic acid, MK-8(H4) was the predominant menaquinone and iso-C16 : 0 was the predominant fatty acid. The DNA G+C content was 72.1 mol%. The 16S rRNA gene sequence of strain A2-4T was 98.3–99.1 % similar to those of the type strains of Nocardioides simplex, Nocardioides aromaticivorans and Nocardioides nitrophenolicus and 93.8–96.3 % similar to those of the type strains of other Nocardioides species. Strain A2-4T could be distinguished from the three phylogenetic relatives, N. nitrophenolicus, N. aromaticivorans and N. simplex, by DNA–DNA relatedness (25–42 %) and by differences in some phenotypic characteristics. On the basis of the phenotypic, phylogenetic and genetic data, the strain represents a novel species of the genus Nocardioides, for which the name Nocardioides kongjuensis sp. nov. is proposed. The type strain is A2-4T (=KCTC 19054T=JCM 12609T).


2011 ◽  
Vol 61 (5) ◽  
pp. 1061-1065 ◽  
Author(s):  
Guo-Zhen Zhao ◽  
Jie Li ◽  
Hai-Yu Huang ◽  
Wen-Yong Zhu ◽  
Li-Xing Zhao ◽  
...  

A novel actinomycete strain, designated YIM 63587T, was isolated from surface-sterilized roots of Artemisia annua L. collected from Yunnan province, south-west China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 63587T was affiliated to the genus Pseudonocardia. 16S rRNA gene sequence similarities between strain YIM 63587T and type strains of species of the genus Pseudonocardia were 96.6–93.8 %. The diagnostic cell-wall diamino acid in the peptidoglycan layer of strain YIM 63587T was meso-diaminopimelic acid and the whole-cell sugars were arabinose, galactose, mannose and ribose. The predominant menaquinone was MK-8(H4) (97.7 %). The phospholipids were diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol mannosides, phosphatidylinositol and an unknown phospholipid. The major cellular fatty acids (>5 %) were iso-C16 : 0 (44.7 %), iso-C14 : 0 (10.3 %), iso-C16 : 1 H (9.8 %) and iso-C15 : 0 (7.7 %). The G+C content of the genomic DNA was 68.2 mol%. On the basis of phylogenetic, physiological and chemotaxonomic data, strain YIM 63587T represents a novel species of the genus Pseudonocardia, for which the name Pseudonocardia artemisiae sp. nov. is proposed. The type strain is YIM 63587T ( = DSM 45313T = CCTCC AA 208081T).


2012 ◽  
Vol 62 (2) ◽  
pp. 445-450 ◽  
Author(s):  
De-Chao Zhang ◽  
Peter Schumann ◽  
Mersiha Redzic ◽  
Yu-Guang Zhou ◽  
Hong-Can Liu ◽  
...  

A Gram-positive, non-motile, rod-shaped, psychrophilic actinomycete, designated strain Cr7-14T, was isolated from alpine glacier cryoconite. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain Cr7-14T was related to members of the genus Nocardioides and shared highest 16S rRNA gene sequence similarities with the type strains of Nocardioides furvisabuli (98.6 %), Nocardioides ganghwensis (98.2 %), Nocardioides oleivorans (98.1 %) and Nocardioides exalbidus (97.6 %). The predominant cellular fatty acids of strain Cr7-14T were C17 : 1ω8c (39.5 %) and iso-C16 : 0 (32.4 %). The major menaquinone was MK-8(H4). The diagnostic diamino acid in the cell-wall peptidoglycan was ll-2,6-diaminopimelic acid. The predominant cell-wall sugars were galactose and rhamnose. The polar lipid pattern contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, four unknown glycolipids and two unknown polar lipids. The genomic DNA G+C content was 71.9 mol%. On the basis of phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness data, a novel species, Nocardioides alpinus sp. nov., is proposed, with Cr7-14T ( = DSM 23325T = LMG 26053T = CGMCC 1.10697T) as the type strain.


2007 ◽  
Vol 57 (11) ◽  
pp. 2472-2475 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Soo-Young Lee ◽  
Tae-Kwang Oh

A Gram-positive, rod- or coccoid-shaped bacterial strain, DS-17T, was isolated from a soil in Dokdo, Korea, and its taxonomic position was investigated by using a polyphasic approach. Strain DS-17T grew optimally at around pH 8.0 and 30 °C in the presence of 0.5–1.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain DS-17T belonged to the genus Nocardioides. The chemotaxonomic properties of strain DS-17T were consistent with those of the genus Nocardioides: the cell-wall peptidoglycan type was based on ll-2,6-diaminopimelic acid, MK-8(H4) was the predominant menaquinone and iso-C16 : 0, C17 : 1 ω8c and C17 : 0 were the major fatty acids. The DNA G+C content was 71.5 mol%. Strain DS-17T exhibited 16S rRNA gene sequence similarity values of 94.5–96.9 % to the type strains of recognized Nocardioides species. Strain DS-17T could be distinguished from recognized Nocardioides species by differences in phenotypic characteristics. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain DS-17T is considered to represent a novel species of the genus Nocardioides, for which the name Nocardioides terrigena sp. nov. is proposed. The type strain is DS-17T (=KCTC 19217T=JCM 14582T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2310-2314 ◽  
Author(s):  
Juan Du ◽  
Qiliang Lai ◽  
Yang Liu ◽  
Chunming Dong ◽  
Yanrong Xie ◽  
...  

A Gram-reaction-negative, facultatively anaerobic and rod-shaped bacterium, designated strain JN14CK-3T, was isolated from surface sediment of the Jiulong River of China and was characterized phenotypically and phylogenetically. Phylogenetic analysis of the 16S rRNA gene sequences indicated that strain JN14CK-3T belonged to the genus Draconibacterium, with the highest sequence similarity (98.3 %) to Draconibacterium orientale FH5T. By contrast, strain JN14CK-3T shared low 16S rRNA gene sequence similarities ( < 91.0 %) with other type strains. The sole respiratory quinone was MK-7.The polar lipids were phosphatidylethanolamine and several unidentified phospholipids and lipids. The major fatty acids were iso-C15:0, iso-C16:0, anteiso-C15:0, C17:0 2-OH, iso-C16:0 3-OH and iso-C17:0 3-OH. The G+C content of the genomic DNA was 40.9 mol%. The digital DNA–DNA hybridization value and average nucleotide identity (ANI) between strain JN14CK-3T and D. orientale FH5T were 34.2 ± 2.5 % and 87.1 %, respectively. The combined genotypic and phenotypic data showed that strain JN14CK-3T represents a novel species of the genus Draconibacterium, for which the name Draconibacterium sediminis sp. nov. is proposed, with the type strain JN14CK-3T ( = MCCC 1A00734T = KCTC 42152T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3806-3811 ◽  
Author(s):  
Lili Niu ◽  
Tianyi Tang ◽  
Zhongliang Ma ◽  
Lei Song ◽  
Kegui Zhang ◽  
...  

A novel Gram-staining-positive, aerobic, endospore-forming, rod-shaped bacterial strain, YN2T, was isolated from ripened Pu'er tea. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain represented a novel species of the genus Paenibacillus. The strains most closely related to strain YN2T were Paenibacillus vulneris JCM 18268T and Paenibacillus rigui JCM 16352T, with 16S rRNA similarities of 98.6 and 95.5 %, respectively. Chemotaxonomic data supported the affiliation of the new isolate to the genus Paenibacillus, including MK-7 as the major menaquinone, DNA G+C content of 51 mol%, cell-wall type A1γ (meso-diaminopimelic acid as the diagnostic diamino acid) and anteiso-C15 : 0 and iso-C16 : 0 as the major fatty acids. Major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylmonomethylethanolamine and phospholipid. Strain YN2T could be differentiated from recognized species of the genus Paenibacillus based on phenotypic characteristics, chemotaxonomic differences, phylogenetic analysis and DNA–DNA hybridization data. On the basis of evidence from this polyphasic study, Paenibacillus yunnanensis sp. nov., is proposed, with strain YN2T ( = CGMCC 1.12968T = JCM 30953T) as the type strain.


Sign in / Sign up

Export Citation Format

Share Document