scholarly journals An imprint method for detecting leptospires in the hamster model of vaccine-mediated immunity for leptospirosis

2009 ◽  
Vol 58 (12) ◽  
pp. 1632-1637 ◽  
Author(s):  
Adenizar D. Chagas-Junior ◽  
Alan J. A. McBride ◽  
Daniel A. Athanazio ◽  
Cláudio P. Figueira ◽  
Marco A. Medeiros ◽  
...  

In determining the efficacy of new vaccine candidates for leptospirosis, the primary end point is death and an important secondary end point is sterilizing immunity. However, evaluation of this end point is often hampered by the time-consuming demands and complexity of methods such as culture isolation (CI). In this study, we evaluated the use of an imprint (or touch preparation) method (IM) in detecting the presence of leptospires in tissues of hamsters infected with Leptospira interrogans serovar Copenhageni. In a dissemination study, compared to CI, the IM led to equal or improved detection of leptospires in kidney, liver, lung and blood samples collected post-infection and overall concordance was good (κ=0.61). Furthermore, in an evaluation of hamsters immunized with a recombinant leptospiral protein-based vaccine candidate and subsequently challenged, the agreement between the CI and IM was very good (κ=0.84). These findings indicate that the IM is a rapid method for the direct observation of Leptospira spp. that can be readily applied to evaluating infection in experimental animals and determining sterilizing immunity when screening potential vaccine candidates.

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Aline F. Teixeira ◽  
Luis G. V. Fernandes ◽  
Antonio Souza Filho ◽  
Gisele O. Souza ◽  
Silvio A. Vasconcellos ◽  
...  

Leptospirosis is a neglected tropical disease caused by pathogenicLeptospiraspp. The lack of an effective vaccine favors the increase of the disease. Currently, surface-exposed proteins are the main targets for the search of vaccine candidates. In this study, we examined whether the surface Lsa46 and Lsa77 proteins, previously identified as laminin and plasminogen binding proteins, have the capacity of inducing protection and sterilizing immunity against challenge with virulentLeptospirain hamster model. Animals were subcutaneously immunized with Lsa46, Lsa77, or a combination of both in Alum adjuvant and challenged intraperitoneally withL. interrogansserovar Kennewicki strain Pomona Fromm. Hamster immunization with Lsa46 or Lsa77 or both promoted a strong IgG response. Th2- and Th1-biased immune responses were observed when Lsa46 and Lsa77 were individually administered, respectively, as detected by the IgG1/IgG2/3 ratio. Immunized hamsters with the combined proteins induced a Th1-biased immune response. Although the immunization with Lsa46 and Lsa77 stimulated protective immunity with reduction of bacterial burden, when compared to animals individually immunized with the proteins, the data was not statistically significant. Thus, although promising, more studies are needed before the role of these proteins in stimulating sterilizing immunity in mammals is conclusively determined.


2006 ◽  
Vol 74 (3) ◽  
pp. 1745-1750 ◽  
Author(s):  
Raghavan U. M. Palaniappan ◽  
Sean P. McDonough ◽  
Thomas J. Divers ◽  
Chia-Sui Chen ◽  
Ming-Jeng Pan ◽  
...  

ABSTRACTWe previously reported the cloning and characterization of leptospiral immunoglobulin-like proteins LigA and LigB ofLeptospira interrogans. LigA and LigB are conserved at the amino-terminal region but are variable at the carboxyl-terminal region. Here, we evaluate the potential of recombinant LigA (rLigA) as a vaccine candidate against infection byL. interrogansserovar Pomona in a hamster model. rLigA was truncated into conserved (rLigAcon) and variable (rLigAvar) regions and expressed inEscherichia colias a fusion protein with glutathione-S-transferase (rLigA). Golden Syrian hamsters were immunized at 3 and 6 weeks of age with rLigA (rLigAcon and rLigAvar) with aluminum hydroxide as an adjuvant. Hamsters given recombinant glutathione-S-transferase (rGST)-adjuvant and phosphate-buffered saline-adjuvant served as nonvaccinated controls. Three weeks after the last vaccination, all animals were challenged intraperitoneally with 108L. interrogansserovar Pomona bacteria (NVSL 1427-35-093002). All hamsters immunized with recombinant LigA survived after challenge and had no significant histopathological changes. In contrast, nonimmunized and rGST-immunized hamsters were subjected to lethal doses, and the hamsters that survived showed severe tubulointerstitial nephritis. All vaccinated animals showed a rise in antibody titers against rLigA. Results from this study indicate that rLigA is a potential vaccine candidate againstL. interrogansserovar Pomona infection.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Vicente P. Martins ◽  
Carina S. Pinheiro ◽  
Barbara C. P. Figueiredo ◽  
Natan R. G. Assis ◽  
Suellen B. Morais ◽  
...  

The flatwormSchistosoma mansoniis a blood fluke parasite that causes schistosomiasis, a debilitating disease that occurs throughout the developing world. Current schistosomiasis control strategies are mainly based on chemotherapy, but many researchers believe that the best long-term strategy to control schistosomiasis is through immunization with an antischistosomiasis vaccine combined with drug treatment. In the search for potential vaccine candidates, numerous tegument antigens have been assessed. As the major interface between parasite and mammalian host, the tegument plays crucial roles in the establishment and further course of schistosomiasis. Herein, we evaluated the potential of a GPI fraction, containing representative molecules located on the outer surface of adult worms, as vaccine candidate. Immunization of mice with GPI-anchored proteins induced a mixed Th1/Th2 type of immune response with production of IFN-γand TNF-α, and low levels of IL-5 into the supernatant of splenocyte cultures. The protection engendered by this vaccination protocol was confirmed by 42% reduction in worm burden, 45% reduction in eggs per gram of hepatic tissue, 29% reduction in the number of granulomas per area, and 53% reduction in the granuloma fibrosis. Taken together, the data herein support the potential of surface-exposed GPI-anchored antigens from theS. mansonitegument as vaccine candidate.


Parasitology ◽  
2020 ◽  
Vol 147 (12) ◽  
pp. 1330-1337
Author(s):  
Marianna Nascimento Manhani ◽  
Cristiane Queixa Tilelli ◽  
Vanessa da Silva Ribeiro ◽  
Luiz Ricardo Goulart ◽  
Julia Maria Costa-Cruz

AbstractHuman cysticercosis is a public health problem caused by Taenia solium metacestodes; thus, eradication of T. solium transmission by vaccination is an urgent requirement. The Cc48 mimotope from T. solium cysticerci was tested expressed in phage particles (mCc48) and chemically synthesized (sCc48) as a vaccine candidate in experimental murine cysticercosis. For this, BALB/c mice were immunized with mCc48 (G1; n = 40), sCc48 (G2; n = 40) and phosphate-buffered saline (PBS) (G3; n = 40, positive control) and challenged with Taenia crassiceps metacestodes. Another PBS group without parasite challenge was used as a negative control (G4; n = 40). Mice were sacrificed 15, 30, 45 and 60 days post-infection for cysticerci and serum collection. Immunization efficacy was determined by cysticerci counting. Serum samples were tested by ELISA to verify antibody (IgM, IgG, IgA and IgE) and cytokine (IFNγ and IL-4) levels. The sCc48 achieved the highest rates of protection and efficacy (90 and 98%, respectively). The group immunized with mCc48 presented the highest reactivity for IgM, IgG and IgE. All groups presented IL-4, but IFNγ was quite variable among groups. The protection induced by sCc48 synthetic peptide supports further studies of this mimotope as a potential vaccine candidate against cysticercosis.


Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 340
Author(s):  
Izabela K Ragan ◽  
Lindsay M Hartson ◽  
Taru S Dutt ◽  
Andres Obregon-Henao ◽  
Rachel M Maison ◽  
...  

The COVID-19 pandemic has generated intense interest in the rapid development and evaluation of vaccine candidates for this disease and other emerging diseases. Several novel methods for preparing vaccine candidates are currently undergoing clinical evaluation in response to the urgent need to prevent the spread of COVID-19. In many cases, these methods rely on new approaches for vaccine production and immune stimulation. We report on the use of a novel method (SolaVAX) for production of an inactivated vaccine candidate and the testing of that candidate in a hamster animal model for its ability to prevent infection upon challenge with SARS-CoV-2 virus. The studies employed in this work included an evaluation of the levels of neutralizing antibody produced post-vaccination, levels of specific antibody sub-types to RBD and spike protein that were generated, evaluation of viral shedding post-challenge, flow cytometric and single cell sequencing data on cellular fractions and histopathological evaluation of tissues post-challenge. The results from this preliminary evaluation provide insight into the immunological responses occurring as a result of vaccination with the proposed vaccine candidate and the impact that adjuvant formulations, specifically developed to promote Th1 type immune responses, have on vaccine efficacy and protection against infection following challenge with live SARS-CoV-2. This data may have utility in the development of effective vaccine candidates broadly. Furthermore, the results of this preliminary evaluation suggest that preparation of a whole virion vaccine for COVID-19 using this specific photochemical method may have potential utility in the preparation of one such vaccine candidate.


2021 ◽  
Vol 7 (22) ◽  
pp. eabg7156
Author(s):  
So-Hee Hong ◽  
Hanseul Oh ◽  
Yong Wook Park ◽  
Hye Won Kwak ◽  
Eun Young Oh ◽  
...  

Since the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), various vaccines are being developed, with most vaccine candidates focusing on the viral spike protein. Here, we developed a previously unknown subunit vaccine comprising the receptor binding domain (RBD) of the spike protein fused with the tetanus toxoid epitope P2 (RBD-P2) and tested its efficacy in rodents and nonhuman primates (NHPs). We also investigated whether the SARS-CoV-2 nucleocapsid protein (N) could increase vaccine efficacy. Immunization with N and RBD-P2 (RBDP2/N) + alum increased T cell responses in mice and neutralizing antibody levels in rats compared with those obtained using RBD-P2 + alum. Furthermore, in NHPs, RBD-P2/N + alum induced slightly faster SARS-CoV-2 clearance than that induced by RBD-P2 + alum, albeit without statistical significance. Our study supports further development of RBD-P2 as a vaccine candidate against SARS-CoV-2. Also, it provides insights regarding the use of N in protein-based vaccines against SARS-CoV-2.


Biologia ◽  
2021 ◽  
Author(s):  
Elham Mehdizadeh Marzenaki ◽  
Ali Reza Saeedinia ◽  
Mehdi Zeinoddini ◽  
Ali Asghar Deldar

2021 ◽  
Vol 9 (2) ◽  
pp. 306
Author(s):  
Cansu Karyal ◽  
Jaime Hughes ◽  
Michelle L. Kelly ◽  
Jeni C. Luckett ◽  
Philip V. Kaye ◽  
...  

Clostridioides difficile is the main cause of health-care-associated infectious diarrhoea. Toxins, TcdA and TcdB, secreted by this bacterium damage colonic epithelial cells and in severe cases this culminates in pseudomembranous colitis, toxic megacolon and death. Vaccines in human trials have focused exclusively on the parenteral administration of toxin-based formulations. These vaccines promote toxin-neutralising serum antibodies but fail to confer protection from infection in the gut. An effective route to immunise against gut pathogens and stimulate a protective mucosal antibody response (secretory immunoglobulin A, IgA) at the infection site is the oral route. Additionally, oral immunisation generates systemic antibodies (IgG). Using this route, two different antigens were tested in the hamster model: The colonisation factor CD0873 and a TcdB fragment. Animals immunised with CD0873 generated a significantly higher titre of sIgA in intestinal fluid and IgG in serum compared to naive animals, which significantly inhibited the adherence of C. difficile to Caco-2 cells. Following challenge with a hypervirulent isolate, the CD0873-immunised group showed a mean increase of 80% in time to experimental endpoint compared to naïve animals. Survival and body condition correlated with bacterial clearance and reduced pathology in the cecum. Our findings advocate CD0873 as a promising oral vaccine candidate against C. difficile.


2009 ◽  
Vol 78 (3) ◽  
pp. 1383-1389 ◽  
Author(s):  
Gabriella M. Scandurra ◽  
Geoffrey W. de Lisle ◽  
Sonia M. Cavaignac ◽  
May Young ◽  
R. Pamela Kawakami ◽  
...  

ABSTRACT Mycobacterium avium subsp. paratuberculosis (basonym M. paratuberculosis) is the causative agent of paratuberculosis, a chronic enteritis of ruminants. To control the considerable economic effect that paratuberculosis has on the livestock industry, a vaccine that induces protection with minimal side effects is required. We employed transposon mutagenesis and allelic exchange to develop three potential vaccine candidates, which were then tested for virulence with macrophages, mice, and goats. All three models identified the WAg906 mutant as being the most attenuated, but some differences in the levels of attenuation were evident among the models when testing the other strains. In a preliminary mouse vaccine experiment, limited protection was induced by WAg915, as evidenced by a reduced bacterial load in spleens and livers 12 weeks following intraperitoneal challenge with M. paratuberculosis K10. While we found macrophages and murine models to be rapid and cost-effective alternatives for the initial screening of M. paratuberculosis mutants for attenuation, it appears necessary to do the definitive assessment of attenuation with a ruminant model.


Sign in / Sign up

Export Citation Format

Share Document