The muramidase EtgA from enteropathogenic Escherichia coli is required for efficient type III secretion

Microbiology ◽  
2011 ◽  
Vol 157 (4) ◽  
pp. 1145-1160 ◽  
Author(s):  
Elizabeth García-Gómez ◽  
Norma Espinosa ◽  
Javier de la Mora ◽  
Georges Dreyfus ◽  
Bertha González-Pedrajo

Enteropathogenic Escherichia coli (EPEC) is an important cause of infectious diarrhoea. It colonizes human intestinal epithelial cells by delivering effector proteins into the host cell cytoplasm via a type III secretion system (T3SS) encoded within the chromosomal locus of enterocyte effacement (LEE). The LEE pathogenicity island also encodes a lytic transglycosylase (LT) homologue named EtgA. In the present work we investigated the significance of EtgA function in type III secretion (T3S). Purified recombinant EtgA was found to have peptidoglycan lytic activity in vitro. Consistent with this function, signal peptide processing and bacterial cell fractionation revealed that EtgA is a periplasmic protein. EtgA possesses the conserved glutamate characteristic of the LT family, and we show here that it is essential for enzymic activity. Overproduction of EtgA in EPEC inhibits bacterial growth and induces cell lysis unless the predicted catalytic glutamate is mutated. An etgA mutant is attenuated for T3S, red blood cell haemolysis and EspA filamentation. BfpH, a plasmid-encoded putative LT, was not able to functionally replace EtgA. Overall, our results indicate that the muramidase activity of EtgA is not critical but makes a significant contribution to the efficiency of the T3S process.

2003 ◽  
Vol 71 (4) ◽  
pp. 1725-1732 ◽  
Author(s):  
Tina Ide ◽  
Silke Michgehl ◽  
Sabine Knappstein ◽  
Gerhard Heusipp ◽  
M. Alexander Schmidt

ABSTRACT Enteropathogenic Escherichia coli (EPEC) strains are a common cause of persistent diarrhea among infants, primarily in developing countries. The pathogenicity of EPEC is associated with the expression and secretion of bacterial proteins encoded by the chromosomal locus of enterocyte effacement (LEE). The LEE-encoded type III-secreted proteins EspA, EspB, and EspD are part of a molecular syringe, which is used by EPEC to translocate effector proteins directly into the cytoplasm of host cells. The type III-secreted translocated intimin receptor (Tir) protein is thought to be delivered by an Esp-dependent mechanism into the host cell, and this is followed by insertion into the host plasma membrane, where the protein serves as the receptor for intimin, an afimbrial bacterial adhesin. Type III secretion is subject to environmental regulation, and secretion can be induced in vitro by growing bacteria in cell culture medium. In this study we found that Ca2+ is involved in the regulation of type III secretion both in classical locally adherent EPEC and in atypical diffusely adherent EPEC. Interestingly, we observed contrasting secretion of Esp proteins and Tir in response to Ca2+. While the secretion of Tir is clearly enhanced and the protein is integrated into HeLa membranes under calcium chelation conditions, Esp secretion is strongly reduced under these conditions. These data suggest that under Ca2+-depleted conditions Tir might be secreted into the medium and integrated into host membranes by an Esp-independent mechanism, without the need for a functional type III translocation machinery.


2003 ◽  
Vol 71 (4) ◽  
pp. 2130-2141 ◽  
Author(s):  
Bianca C. Neves ◽  
Rosanna Mundy ◽  
Liljana Petrovska ◽  
Gordon Dougan ◽  
Stuart Knutton ◽  
...  

ABSTRACT Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli are extracellular pathogens that employ a type III secretion system to export translocator and effector proteins, proteins which facilitates colonization of the mucosal surface of the intestine via formation of attaching and effacing (A/E) lesions. The genes encoding the proteins for A/E lesion formation are located on a pathogenicity island, termed the locus of enterocyte effacement (LEE), which contains eae encoding intimin as well as the type III secretion system and effector genes. Many type III secreted proteins are stabilized and maintained in a secretion-competent conformation in the bacterial cytosol by specific chaperone proteins. Three type III chaperones have been described thus far within the EPEC LEE region: CesD, for the translocator proteins EspB and EspD; CesT, for the effector proteins Tir and Map; and CesF, for EspF. In this study we report the characterization of CesD2 (previously Orf27), a second LEE-encoded chaperone for EspD. We show specific CesD2-EspD protein interaction which appears to be necessary for proper EspD secretion in vitro and pathogenesis in vivo as demonstrated in the A/E-lesion-forming mouse pathogen Citrobacter rodentium.


2007 ◽  
Vol 189 (7) ◽  
pp. 2863-2872 ◽  
Author(s):  
Jay L. Mellies ◽  
Kenneth R. Haack ◽  
Derek C. Galligan

ABSTRACT Genomes of bacterial pathogens contain and coordinately regulate virulence-associated genes in order to cause disease. Enteropathogenic Escherichia coli (EPEC), a major cause of watery diarrhea in infants and a model gram-negative pathogen, expresses a type III secretion system (TTSS) that is encoded by the locus of enterocyte effacement (LEE) and is necessary for causing attaching and effacing intestinal lesions. Effector proteins encoded by the LEE and in cryptic prophage are injected into the host cell cytoplasm by the TTTS apparatus, ultimately leading to diarrhea. The LEE is comprised of multiple polycistronic operons, most of which are controlled by the global, positive regulator Ler. Here we demonstrated that the LEE2 and LEE3 operons also responded to SOS signaling and that this regulation was LexA dependent. As determined by a DNase I protection assay, purified LexA protein bound in vitro to a predicted SOS box located in the divergent, overlapping LEE2/LEE3 promoters. Expression of the lexA1 allele, encoding an uncleavable LexA protein in EPEC, resulted in reduced secretion, particularly in the absence of the Ler regulator. Finally, we obtained evidence that the cryptic phage-located nleA gene encoding an effector molecule is SOS regulated. Thus, we demonstrated, for the first time to our knowledge, that genes encoding components of a TTSS are regulated by the SOS response, and our data might explain how a subset of EPEC effector proteins, encoded in cryptic prophages, are coordinately regulated with the LEE-encoded TTSS necessary for their translocation into host cells.


Microbiology ◽  
2006 ◽  
Vol 152 (1) ◽  
pp. 143-152 ◽  
Author(s):  
Ciara M. Shaver ◽  
Alan R. Hauser

The effector proteins of the type III secretion systems of many bacterial pathogens act in a coordinated manner to subvert host cells and facilitate the development and progression of disease. It is unclear whether interactions between the type-III-secreted proteins of Pseudomonas aeruginosa result in similar effects on the disease process. We have previously characterized the contributions to pathogenesis of the type-III-secreted proteins ExoS, ExoT and ExoU when secreted individually. In this study, we extend our prior work to determine whether these proteins have greater than expected effects on virulence when secreted in combination. In vitro cytotoxicity and anti-internalization activities were not enhanced when effector proteins were secreted in combinations rather than alone. Likewise in a mouse model of pneumonia, bacterial burden in the lungs, dissemination and mortality attributable to ExoS, ExoT and ExoU were not synergistically increased when combinations of these effector proteins were secreted. Because of the absence of an appreciable synergistic increase in virulence when multiple effector proteins were secreted in combination, we conclude that any cooperation between ExoS, ExoT and ExoU does not translate into a synergistically significant enhancement of disease severity as measured by these assays.


2006 ◽  
Vol 75 (3) ◽  
pp. 1089-1098 ◽  
Author(s):  
Vincent T. Lee ◽  
Stefan Pukatzki ◽  
Hiromi Sato ◽  
Eriya Kikawada ◽  
Anastasia A. Kazimirova ◽  
...  

ABSTRACT A number of bacterial pathogens utilize the type III secretion pathway to deliver effector proteins directly into the host cell cytoplasm. Certain strains of Pseudomonas aeruginosa associated with acute infections express a potent cytotoxin, exoenzyme U (ExoU), that is delivered via the type III secretion pathway directly into contacting host cells. Once inside the mammalian cell, ExoU rapidly lyses the intoxicated cells via its phospholipase A2 (PLA2) activity. A high-throughput cell-based assay was developed to screen libraries of compounds for those capable of protecting cells against the cytotoxic effects of ExoU. A number of compounds were identified in this screen, including one group that blocks the intracellular activity of ExoU. In addition, these compounds specifically inhibited the PLA2 activity of ExoU in vitro, whereas eukaryotic secreted PLA2 and cytosolic PLA2 were not inhibited. This novel inhibitor of ExoU-specific PLA2 activity, named pseudolipasin A, may provide a new lead for virulence factor-based therapeutic design.


2004 ◽  
Vol 53 (11) ◽  
pp. 1145-1149 ◽  
Author(s):  
Rosanna Mundy ◽  
Claire Jenkins ◽  
Jun Yu ◽  
Henry Smith ◽  
Gad Frankel

Enterohaemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli are important diarrhoeagenic pathogens; infection is dependent on translocation of a number of type III effector proteins. Until recently all the known effectors were encoded on the LEE pathogenicity island, which also encodes the adhesin intimin and the type III secretion apparatus. Recently, a novel non-LEE effector protein, EspI/NleA, which is required for full virulence in vivo and is encoded on a prophage, was identified. The aim of this study was to determine the distribution of espI among clinical EHEC and EPEC isolates. espI was detected in 86 % and 53 % of LEE+ EHEC and EPEC strains, respectively. Moreover, the espI gene was more commonly found in patients suffering from a more severe disease.


2003 ◽  
Vol 31 (1) ◽  
pp. 98-103 ◽  
Author(s):  
A.J. Roe ◽  
D.E.E. Hoey ◽  
D.L. Gally

Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 causes gastrointestinal disease with the potential for life-threatening sequelae. Although Shiga-like toxins are responsible for much of the serious pathology in humans, the bacterium also possesses a type III protein secretion system that is responsible for intimate attachment to host intestinal mucosa. This sophisticated interaction requires co-ordination that is governed by environmental and genetic factors. Ongoing research supports the following model for how EHEC enables and controls this process: (i) specific environmental cues that are present in the host result in the expression of a number of adhesins, including fimbriae, which allow the initial binding to the mucosal surface. The same conditions support the expression of the basal type III secretion apparatus; (ii) targeting and assembly of the translocon requires both an mRNA signal and chaperones, with coupled translation and secretion of translocon proteins, EspA, B and D; (iii) opening up of a conduit between the bacterium and host cell releases a cytoplasmic pool of effector proteins. A consequence of this is increased expression of particular effector proteins. Potentially, different proteins could be released into the cell at different times or have activities modulated with time; (iv) intimate contact between the translocated intimin receptor (Tir) and the bacterial surface factor intimin requires translocon expression to be down-regulated and translocon filaments to be lost. Fluorescent protein fusions allow contact-mediated regulation and protein targeting through the type III secretion system to be studied in detail.


mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Erez Mills ◽  
Kobi Baruch ◽  
Gili Aviv ◽  
Mor Nitzan ◽  
Ilan Rosenshine

ABSTRACT Type III secretion systems (TTSSs) are employed by pathogens to translocate host cells with effector proteins, which are crucial for virulence. The dynamics of effector translocation, behavior of the translocating bacteria, translocation temporal order, and relative amounts of each of the translocated effectors are all poorly characterized. To address these issues, we developed a microscopy-based assay that tracks effector translocation. We used this assay alongside a previously described real-time population-based translocation assay, focusing mainly on enteropathogenic Escherichia coli (EPEC) and partly comparing it to Salmonella. We found that the two pathogens exhibit different translocation behaviors: in EPEC, a subpopulation that formed microcolonies carried out most of the translocation activity, while Salmonella executed protein translocation as planktonic bacteria. We also noted variability in host cell susceptibility, with some cells highly resistant to translocation. We next extended the study to determine the translocation dynamics of twenty EPEC effectors and found that all exhibited distinct levels of translocation efficiency. Further, we mapped the global effects of key TTSS-related components on TTSS activity. Our results provide a comprehensive description of the dynamics of the TTSS activity of EPEC and new insights into the mechanisms that control the dynamics. IMPORTANCE EPEC and the closely related enterohemorrhagic Escherichia coli (EHEC) represent a global public health problem. New strategies to combat EPEC and EHEC infections are needed, and development of such strategies requires better understanding of their virulence machinery. The TTSS is a critical virulence mechanism employed by these pathogens, and by others, including Salmonella. In this study, we aimed at elucidating new aspects of TTSS function. The results obtained provide a comprehensive description of the dynamics of TTSS activity of EPEC and new insights into the mechanisms that control these changes. This knowledge sets the stage for further analysis of the system and may accelerate the development of new ways to treat EPEC and EHEC infections. Further, the newly described microscopy-based assay can be readily adapted to study the dynamics of TTSS activity in other pathogens.


2005 ◽  
Vol 187 (23) ◽  
pp. 8164-8171 ◽  
Author(s):  
Diana Ideses ◽  
Uri Gophna ◽  
Yossi Paitan ◽  
Roy R. Chaudhuri ◽  
Mark J. Pallen ◽  
...  

ABSTRACT The type III secretion system (T3SS) is an important virulence factor used by several gram-negative bacteria to deliver effector proteins which subvert host cellular processes. Enterohemorrhagic Escherichia coli O157 has a well-defined T3SS involved in attachment and effacement (ETT1) and critical for virulence. A gene cluster potentially encoding an additional T3SS (ETT2), which resembles the SPI-1 system in Salmonella enterica, was found in its genome sequence. The ETT2 gene cluster has since been found in many E. coli strains, but its in vivo role is not known. Many of the ETT2 gene clusters carry mutations and deletions, raising the possibility that they are not functional. Here we show the existence in septicemic E. coli strains of an ETT2 gene cluster, ETT2sepsis, which, although degenerate, contributes to pathogenesis. ETT2sepsis has several premature stop codons and a large (5 kb) deletion, which is conserved in 11 E. coli strains from cases of septicemia and newborn meningitis. A null mutant constructed to remove genes coding for the putative inner membrane ring of the secretion complex exhibited significantly reduced virulence. These results are the first demonstration of the importance of ETT2 for pathogenesis.


2001 ◽  
Vol 14 (3) ◽  
pp. 394-404 ◽  
Author(s):  
Ian R. Brown ◽  
John W. Mansfield ◽  
Suvi Taira ◽  
Elina Roine ◽  
Martin Romantschuk

The Hrp pilus, composed of HrpA subunits, is an essential component of the type III secretion system in Pseudomonas syringae. We used electron microscopy (EM) and immunocytochemistry to examine production of the pilus in vitro from P. syringae pv. tomato strain DC3000 grown under hrp-inducing conditions on EM grids. Pili, when labeled with antibodies to HrpA, developed rapidly in a nonpolar manner shortly after the detection of the hrpA transcript and extended up to 5 μm into surrounding media. Structures at the base of the pilus were clearly differentiated from the basal bodies of flagella. The HrpZ protein, also secreted via the type III system, was found by immunogold labeling to be associated with the pilus in vitro. Accumulation and secretion of HrpA and HrpZ were also examined quantitatively after the inoculation of wild-type DC3000 and hrpA and hrpZ mutants into leaves of Arabidopsis thaliana. The functional pilus crossed the plant cell wall to generate tracks of immunogold labeling for HrpA and HrpZ. Mutants that produced HrpA but did not assemble pili were nonpathogenic, did not secrete HrpA protein, and were compromised for the accumulation of HrpZ. A model is proposed in which the rapidly elongating Hrp pilus acts as a moving conveyor, facilitating transfer of effector proteins from bacteria to the plant cytoplasm across the formidable barrier of the plant cell wall.


Sign in / Sign up

Export Citation Format

Share Document