Formation of ‘non-culturable’ cells of Mycobacterium smegmatis in stationary phase in response to growth under suboptimal conditions and their Rpf-mediated resuscitation

Microbiology ◽  
2004 ◽  
Vol 150 (6) ◽  
pp. 1687-1697 ◽  
Author(s):  
Margarita Shleeva ◽  
Galina V. Mukamolova ◽  
Michael Young ◽  
Huw D. Williams ◽  
Arseny S. Kaprelyants

Conditions were investigated that promote the formation of ‘non-culturable’ (NC) cells of Mycobacterium (Myc.) smegmatis in stationary phase. After cultivation in a rich medium, or under conditions that may be considered optimal for bacterial growth, or starvation for carbon, nitrogen or phosphorus, bacteria failed to enter a NC state. However, when grown under suboptimal conditions, resulting in a reduced growth rate or maximal cell concentration (e.g. in modified Hartman's–de Bont medium), bacteria adopted a stable NC state after 3–4 days incubation in stationary phase. Such conditions are not specific as purF and devR mutants of Myc. smegmatis also showed (transient) loss of culturability following growth to stationary phase in an optimized medium, but under oxygen-limited conditions. The behaviour of the same mutants in oxygen-sufficient but nutrient-inappropriate medium (modified Hartman's–de Bont medium) was similar to that of the wild-type (adoption of a stable NC state). It is hypothesized that adoption of a NC state may represent an adaptive response of the bacteria, grown under conditions when their metabolism is significantly compromised due to the simultaneous action of several factors, such as usage of inappropriate nutrients or low oxygen availability or impairment of a particular metabolic pathway. NC cells of wild-type Myc. smegmatis resume growth when transferred to a suitable resuscitation medium. Significantly, resuscitation was observed when either recombinant Rpf protein or supernatant derived from a growing bacterial culture was incorporated into the resuscitation medium. Moreover, co-culture with Micrococcus (Mcc.) luteus cells (producing and secreting Rpf) also permitted resuscitation. Isogenic strains of Myc. smegmatis harbouring plasmids containing the Mcc. luteus rpf gene also adopt a similar NC state after growth to stationary phase in modified Hartman's–de Bont medium. However, in contrast to the behaviour noted above, these strains resuscitated spontaneously when transferred to the resuscitation medium, presumably because they are able to resume endogenous synthesis of Mcc. luteus Rpf. Resuscitation was not observed in the control strain harbouring a plasmid lacking Mcc. luteus rpf. In contrast to wild-type, the NC cells of purF and devR mutants obtained under oxygen-limited conditions resuscitate spontaneously, presumably because the heterogeneous population contains some residual viable cells that continue to make Rpf-like proteins.

2007 ◽  
Vol 189 (19) ◽  
pp. 6796-6805 ◽  
Author(s):  
Krzysztof P. Bzymek ◽  
Gerald L. Newton ◽  
Philong Ta ◽  
Robert C. Fahey

ABSTRACT Mycothiol ([MSH] AcCys-GlcN-Ins, where Ac is acetyl) is the major thiol produced by Mycobacterium smegmatis and other actinomycetes. Mutants deficient in MshA (strain 49) or MshC (transposon mutant Tn1) of MSH biosynthesis produce no MSH. However, when stationary phase cultures of these mutants were incubated in medium containing MSH, they actively transported it to generate cellular levels of MSH comparable to or greater than the normal content of the wild-type strain. When these MSH-loaded mutants were transferred to MSH-free preconditioned medium, the cellular MSH was catabolized to generate GlcN-Ins and AcCys. The latter was rapidly converted to Cys by a high deacetylase activity assayed in extracts. The Cys could be converted to pyruvate by a cysteine desulfhydrase or used to regenerate MSH in cells with active MshC. Using MSH labeled with [U-14C]cysteine or with [6-3H]GlcN, it was shown that these residues are catabolized to generate radiolabeled products that are ultimately lost from the cell, indicating extensive catabolism via the glycolytic and Krebs cycle pathways. These findings, coupled with the fact the myo-inositol can serve as a sole carbon source for growth of M. smegmatis, indicate that MSH functions not only as a protective cofactor but also as a reservoir of readily available biosynthetic precursors and energy-generating metabolites potentially important under stress conditions. The half-life of MSH was determined in stationary phase cells to be ∼50 h in strains with active MshC and 16 ± 3 h in the MshC-deficient mutant, suggesting that MSH biosynthesis may be a suitable target for drugs to treat dormant tuberculosis.


2003 ◽  
Vol 185 (5) ◽  
pp. 1543-1554 ◽  
Author(s):  
Ronan O'Toole ◽  
Marjan J. Smeulders ◽  
Marian C. Blokpoel ◽  
Emily J. Kay ◽  
Kathryn Lougheed ◽  
...  

ABSTRACT We identified a response regulator in Mycobacterium smegmatis which plays an important role in adaptation to oxygen-starved stationary phase. The regulator exhibits strong sequence similarity to DevR/Rv3133c of M. tuberculosis. The structural gene is present on a multigene locus, which also encodes a sensor kinase. A devR mutant of M. smegmatis was adept at surviving growth arrest initiated by either carbon or nitrogen starvation. However, its culturability decreased several orders of magnitude below that of the wild type under oxygen-starved stationary-phase conditions. Two-dimensional gel analysis revealed that a number of oxygen starvation-inducible proteins were not expressed in the devR mutant. Three of these proteins are universal stress proteins, one of which is encoded directly upstream of devR. Another protein closely resembles a proposed nitroreductase, while a fifth protein corresponds to the α-crystallin (HspX) orthologue of M. smegmatis. None of the three universal stress proteins or nitroreductase, and a considerably lower amount of HspX was detected in carbon-starved wild-type cultures. A fusion of the hspX promoter to gfp demonstrated that DevR directs gene expression when M. smegmatis enters stationary phase brought about, in particular, by oxygen starvation. To our knowledge, this is the first time a role for a two-component response regulator in the control of universal stress protein expression has been shown. Notably, the devR mutant was 104-fold more sensitive than wild type to heat stress. We conclude that DevR is a stationary-phase regulator required for adaptation to oxygen starvation and resistance to heat stress in M. smegmatis.


1999 ◽  
Vol 181 (1) ◽  
pp. 270-283 ◽  
Author(s):  
Marjan J. Smeulders ◽  
Jacquie Keer ◽  
Richard A. Speight ◽  
Huw D. Williams

ABSTRACT Mycobacterium tuberculosis can persist for many years within host lung tissue without causing clinical disease. Little is known about the state in which the bacilli survive, although it is frequently referred to as dormancy. Some evidence suggests that cells survive in nutrient-deprived stationary phase. Therefore, we are studying stationary-phase survival of Mycobacterium smegmatis as a model for mycobacterial persistence. M. smegmatis cultures could survive 650 days of either carbon, nitrogen, or phosphorus starvation. In carbon-limited medium, cells entered stationary phase before the carbon source (glycerol) had been completely depleted and glycerol uptake from the medium continued during the early stages of stationary phase. These results suggest that the cells are able to sense when the glycerol is approaching limiting concentrations and initiate a shutdown into stationary phase, which involves the uptake of the remaining glycerol from the medium. During early stationary phase, cells underwent reductive cell division and became more resistant to osmotic and acid stress and pool mRNA stabilized. Stationary-phase cells were also more resistant to oxidative stress, but this resistance was induced during late exponential phase in a cell-density-dependent manner. Upon recovery in fresh medium, stationary-phase cultures showed an immediate increase in protein synthesis irrespective of culture age. Colony morphology variants accumulated in stationary-phase cultures. A flat colony variant was seen in 75% of all long-term-stationary-phase cultures and frequently took over the whole population. Cryo scanning electron microscopy showed that the colony organization was different in flat colony strains, flat colonies appearing less well organized than wild-type colonies. Competition experiments with an exponential-phase-adapted wild-type strain showed that the flat strain had a competitive advantage in stationary phase, as well a providing evidence that growth and cell division occur in stationary-phase cultures of M. smegmatis. These results argue against stationary-phase M. smegmatis cultures entering a quiescent state akin to dormancy but support the idea that they are a dynamic population of cells.


2000 ◽  
Vol 182 (23) ◽  
pp. 6707-6713 ◽  
Author(s):  
Eve-Ly Ojangu ◽  
Andres Tover ◽  
Riho Teras ◽  
Maia Kivisaar

ABSTRACT The main sigma factor activating gene expression, necessary in stationary phase and under stress conditions, is ςS. In contrast to other minor sigma factors, RNA polymerase holoenzyme containing ςS (EςS) recognizes a number of promoters which are also recognized by that containing ς70 (Eς70). We have previously shown that transposon Tn4652 can activate silent genes in starvingPseudomonas putida cells by creating fusion promoters during transposition. The sequence of the fusion promoters is similar to the ς70-specific promoter consensus. The −10 hexameric sequence and the sequence downstream from the −10 element differ among these promoters. We found that transcription from the fusion promoters is stationary phase specific. Based on in vivo experiments carried out with wild-type and rpoS-deficient mutant P. putida, the effect of ςS on transcription from the fusion promoters was established only in some of these promoters. The importance of the sequence of the −10 hexamer has been pointed out in several published papers, but there is no information about whether the sequences downstream from the −10 element can affect ςS-dependent transcription. Combination of the −10 hexameric sequences and downstream sequences of different fusion promoters revealed that ςS-specific transcription from these promoters is not determined by the −10 hexameric sequence only. The results obtained in this study indicate that the sequence of the −10 element influences ςS-specific transcription in concert with the sequence downstream from the −10 box.


Tuberculosis ◽  
2015 ◽  
Vol 95 (6) ◽  
pp. 678-681 ◽  
Author(s):  
Tianqi Leng ◽  
Miaomiao Pan ◽  
Xin Xu ◽  
Babak Javid

2004 ◽  
Vol 48 (6) ◽  
pp. 2173-2178 ◽  
Author(s):  
Faten Gad ◽  
Touqir Zahra ◽  
Tayyaba Hasan ◽  
Michael R. Hamblin

ABSTRACT The emergence of antibiotic resistance among pathogenic bacteria has led to efforts to find alternative antimicrobial therapeutics to which bacteria will not be easily able to develop resistance. One of these may be the combination of nontoxic dyes (photosensitizers [PS]) and visible light, known as photodynamic therapy, and we have reported its use to treat localized infections in animal models. While it is known that gram-positive species are generally susceptible to photodynamic inactivation (PDI), the factors that govern variation in degrees of killing are unknown. We used isogenic pairs of wild-type and transposon mutants deficient in capsular polysaccharide and slime production generated from Staphylococcus epidermidis and Staphylococcus aureus to examine the effects of extracellular slime on susceptibility to PDI mediated by two cationic PS (a polylysine-chlorin e6 conjugate, pL-c e6 , and methylene blue [MB]) and an anionic molecule, free c e6 , and subsequent exposure to 665-nm light at 0 to 40 J/cm2. Free c e6 gave more killing of mutant strains than wild type, despite the latter taking up more PS. Log-phase cultures were killed more than stationary-phase cultures, and this correlated with increased uptake. The cationic pL-c e6 and MB gave similar uptakes and killing despite a 50-fold difference in incubation concentration. Differences in susceptibility between strains and between growth phases observed with free c e6 largely disappeared with the cationic compounds despite significant differences in uptake. These data suggest that slime production and stationary phase can be obstacles against PDI for gram-positive bacteria but that these obstacles can be overcome by using cationic PS.


2003 ◽  
Vol 185 (3) ◽  
pp. 1097-1100 ◽  
Author(s):  
Yazmid Reyes-Domínguez ◽  
Gabriel Contreras-Ferrat ◽  
Jesús Ramírez-Santos ◽  
Jorge Membrillo-Hernández ◽  
M. Carmen Gómez-Eichelmann

ABSTRACT Stationary-phase cells displayed a distribution of relaxed plasmids and had the ability to recover plasmid supercoiling as soon as nutrients became available. Preexisting gyrase molecules in these cells were responsible for this recovery. Stationary-phase rpoS cells showed a bimodal distribution of plasmids and failed to supercoil plasmids after the addition of nutrients, suggesting that rpoS plays a role in the regulation of plasmid topology during the stationary phase.


2000 ◽  
Vol 68 (10) ◽  
pp. 5575-5580 ◽  
Author(s):  
Ping Chen ◽  
Rafael E. Ruiz ◽  
Qing Li ◽  
Richard F. Silver ◽  
William R. Bishai

ABSTRACT The alternate RNA polymerase sigma factor gene, sigF, which is expressed in stationary phase and under stress conditions in vitro, has been deleted in the virulent CDC1551 strain ofMycobacterium tuberculosis. The growth rate of the ΔsigF mutant was identical to that of the isogenic wild-type strain in exponential phase, although in stationary phase the mutant achieved a higher density than the wild type. The mutant showed increased susceptibility to rifampin and rifapentine. Additionally, the ΔsigF mutant displayed diminished uptake of chenodeoxycholate, and this effect was reversed by complementation with a wild-type sigF gene. No differences in short-term intracellular growth between mutant and wild-type organisms within human monocytes were observed. Similarly, the organisms did not differ in their susceptibilities to lymphocyte-mediated inhibition of intracellular growth. However, mice infected with the ΔsigF mutant showed a median time to death of 246 days compared with 161 days for wild-type strain-infected animals (P < 0.001). These data indicate that M. tuberculosis sigF is a nonessential alternate sigma factor both in axenic culture and for survival in macrophages in vitro. While the ΔsigF mutant produces a lethal infection of mice, it is less virulent than its wild-type counterpart by time-to-death analysis.


2000 ◽  
Vol 182 (19) ◽  
pp. 5479-5485 ◽  
Author(s):  
Helena I. M. Boshoff ◽  
Valerie Mizrahi

ABSTRACT A pyrazinamidase (PZase)-deficient pncA mutant ofMycobacterium tuberculosis, constructed by allelic exchange, was used to investigate the effects of heterologous amidase gene expression on the susceptibility of this organism to pyrazinamide (PZA) and related amides. The mutant was highly resistant to PZA (MIC, >2,000 μg/ml), in accordance with the well-established role ofpncA in the PZA susceptibility of M. tuberculosis (A. Scorpio and Y. Zhang, Nat. Med. 2:662–667, 1996). Integration of the pzaA gene encoding the major PZase/nicotinamidase from Mycobacterium smegmatis (H. I. M. Boshoff and V. Mizrahi, J. Bacteriol. 180:5809–5814, 1998) or the M. tuberculosis pncA gene into the pncAmutant complemented its PZase/nicotinamidase defect. In bothpzaA- and pncA-complemented mutant strains, the PZase activity was detected exclusively in the cytoplasm, suggesting an intracellular localization for PzaA and PncA. ThepzaA-complemented strain was hypersensitive to PZA (MIC, ≤10 μg/ml) and nicotinamide (MIC, ≥20 μg/ml) and was also sensitive to benzamide (MIC, 20 μg/ml), unlike the wild-type andpncA-complemented mutant strains, which were highly resistant to this amide (MIC, >500 μg/ml). This finding was consistent with the observation that benzamide is hydrolyzed by PzaA but not by PncA. Overexpression of PzaA also conferred sensitivity to PZA, nicotinamide, and benzamide on M. smegmatis (MIC, 150 μg/ml in all cases) and rendered Escherichia colihypersensitive for growth at low pH.


2000 ◽  
Vol 182 (12) ◽  
pp. 3394-3399 ◽  
Author(s):  
Marcel A. Behr ◽  
Benjamin G. Schroeder ◽  
Jacquelyn N. Brinkman ◽  
Richard A. Slayden ◽  
Clifton E. Barry

ABSTRACT BCG vaccines are substrains of Mycobacterium bovisderived by attenuation in vitro. After the original attenuation (1908 to 1921), BCG strains were maintained by serial propagation in different BCG laboratories (1921 to 1961). As a result, various BCG substrains developed which are now known to differ in a number of genetic and phenotypic properties. However, to date, none of these differences has permitted a direct phenotype-genotype link. Since BCG strains differ in their abilities to synthesize methoxymycolic acids and since recent work has shown that the mma3 gene is responsible for O-methylation of hydroxymycolate precursors to form methoxymycolic acids, we analyzed methoxymycolate production andmma3 gene sequences for a genetically defined collection of BCG strains. We found that BCG strains obtained from the Pasteur Institute in 1927 and earlier produced methoxymycolates in vitro but that those obtained from the Pasteur Institute in 1931 and later all failed to synthesize methoxymycolates, and furthermore, themma3 sequence of the latter strains differs from that ofMycobacterium tuberculosis H37Rv by a point mutation at bp 293. Site-specific introduction of this guanine-to-adenine mutation into wild-type mma3 (resulting in the replacement of glycine 98 with aspartic acid) eliminated the ability of this enzyme to produce O-methylated mycolic acids when the mutant was cloned in tandem with mma4 into Mycobacterium smegmatis. These findings indicate that a point mutation in mma3 occurred between 1927 and 1931, and that this mutant population became the dominant clone of BCG at the Pasteur Institute.


Sign in / Sign up

Export Citation Format

Share Document