scholarly journals Hypoxic-response elements in the oncolytic parvovirus Minute virus of mice do not allow for increased vector production at low oxygen concentration

2006 ◽  
Vol 87 (5) ◽  
pp. 1197-1201 ◽  
Author(s):  
Charlotte Servais ◽  
Perrine Caillet-Fauquet ◽  
Marie-Louise Draps ◽  
Thierry Velu ◽  
Yvan de Launoit ◽  
...  

Vectors derived from the autonomous parvovirus Minute virus of mice, MVM(p), are promising tools for the gene therapy of cancer. The validation of their in vivo anti-tumour effect is, however, hampered by the difficulty to produce high-titre stocks. In an attempt to increase vector titres, host cells were subjected to low oxygen tension (hypoxia). It has been shown that a number of viruses are produced at higher titres under these conditions. This is the case, among others, for another member of the family Parvoviridae, the erythrovirus B19 virus. Hypoxia stabilizes a hypoxia-inducible transcription factor (HIF-1α) that interacts with a ‘hypoxia-responsive element’ (HRE), the consensus sequence of which (A/GCGTG) is present in the B19 and MVM promoters. Whilst the native P4 promoter was induced weakly in hypoxia, vector production was reduced dramatically, and adding HRE elements to the P4 promoter of the vector did not alleviate this reduction. Hypoxia has many effects on cell metabolism. Therefore, even if the P4 promoter is activated, the cellular factors that are required for the completion of the parvoviral life cycle may not be expressed.

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 60
Author(s):  
Juan Vélez ◽  
Zahady Velasquez ◽  
Liliana M. R. Silva ◽  
Ulrich Gärtner ◽  
Klaus Failing ◽  
...  

Cryptosporidium parvum is an apicomplexan zoonotic parasite recognized as the second leading-cause of diarrhoea-induced mortality in children. In contrast to other apicomplexans, C.parvum has minimalistic metabolic capacities which are almost exclusively based on glycolysis. Consequently, C. parvum is highly dependent on its host cell metabolism. In vivo (within the intestine) infected epithelial host cells are typically exposed to low oxygen pressure (1–11% O2, termed physioxia). Here, we comparatively analyzed the metabolic signatures of C. parvum-infected HCT-8 cells cultured under both, hyperoxia (21% O2), representing the standard oxygen condition used in most experimental settings, and physioxia (5% O2), to be closer to the in vivo situation. The most pronounced effect of C. parvum infection on host cell metabolism was, on one side, an increase in glucose and glutamine uptake, and on the other side, an increase in lactate release. When cultured in a glutamine-deficient medium, C. parvum infection led to a massive increase in glucose consumption and lactate production. Together, these results point to the important role of both glycolysis and glutaminolysis during C. parvum intracellular replication. Referring to obtained metabolic signatures, we targeted glycolysis as well as glutaminolysis in C. parvum-infected host cells by using the inhibitors lonidamine [inhibitor of hexokinase, mitochondrial carrier protein (MCP) and monocarboxylate transporters (MCT) 1, 2, 4], galloflavin (lactate dehydrogenase inhibitor), syrosingopine (MCT1- and MCT4 inhibitor) and compound 968 (glutaminase inhibitor) under hyperoxic and physioxic conditions. In line with metabolic signatures, all inhibitors significantly reduced parasite replication under both oxygen conditions, thereby proving both energy-related metabolic pathways, glycolysis and glutaminolysis, but also lactate export mechanisms via MCTs as pivotal for C. parvum under in vivo physioxic conditions of mammals.


1987 ◽  
Vol 7 (7) ◽  
pp. 2620-2624
Author(s):  
J M Vos ◽  
J Rommelaere

We studied the effect of apurinic sites on DNA replication in mouse and human cells, using parvoviruses MVM (minute virus of mice) and H-1 as probes. Although apurinic sites are efficient blocks to the replication of these single-stranded DNA viruses in vivo, depurinated parvoviruses can be reactivated if host cells have been preexposed to a subtoxic dose of UV light. The target of this conditional reactivation process is the conversion of depurinated input DNA into double-stranded replicative forms; the concomitant increase in viral mutagenesis strongly suggests that apurinic sites can be bypassed in mammalian cells.


1987 ◽  
Vol 7 (7) ◽  
pp. 2620-2624 ◽  
Author(s):  
J M Vos ◽  
J Rommelaere

We studied the effect of apurinic sites on DNA replication in mouse and human cells, using parvoviruses MVM (minute virus of mice) and H-1 as probes. Although apurinic sites are efficient blocks to the replication of these single-stranded DNA viruses in vivo, depurinated parvoviruses can be reactivated if host cells have been preexposed to a subtoxic dose of UV light. The target of this conditional reactivation process is the conversion of depurinated input DNA into double-stranded replicative forms; the concomitant increase in viral mutagenesis strongly suggests that apurinic sites can be bypassed in mammalian cells.


2005 ◽  
Vol 79 (17) ◽  
pp. 10931-10943 ◽  
Author(s):  
Maria Kontou ◽  
Lakshmanan Govindasamy ◽  
Hyun-Joo Nam ◽  
Nathan Bryant ◽  
Antonio L. Llamas-Saiz ◽  
...  

ABSTRACT Two strains of the parvovirus minute virus of mice (MVM), the immunosuppressive (MVMi) and the prototype (MVMp) strains, display disparate in vitro tropism and in vivo pathogenicity. We report the crystal structures of MVMp virus-like particles (MVMpb) and native wild-type (wt) empty capsids (MVMpe), determined and refined to 3.25 and 3.75 Å resolution, respectively, and their comparison to the structure of MVMi, also refined to 3.5 Å resolution in this study. A comparison of the MVMpb and MVMpe capsids showed their structures to be the same, providing structural verification that some heterologously expressed parvovirus capsids are indistinguishable from wt capsids produced in host cells. The structures of MVMi and MVMp capsids were almost identical, but local surface conformational differences clustered from symmetry-related capsid proteins at three specific domains: (i) the icosahedral fivefold axis, (ii) the “shoulder” of the protrusion at the icosahedral threefold axis, and (iii) the area surrounding the depression at the icosahedral twofold axis. The latter two domains contain important determinants of MVM in vitro tropism (residues 317 and 321) and forward mutation residues (residues 399, 460, 553, and 558) conferring fibrotropism on MVMi. Furthermore, these structural differences between the MVM strains colocalize with tropism and pathogenicity determinants mapped for other autonomous parvovirus capsids, highlighting the importance of common parvovirus capsid regions in the control of virus-host interactions.


2003 ◽  
Vol 369 (3) ◽  
pp. 721-729 ◽  
Author(s):  
María J. BARRERO ◽  
Nuria CAMARERO ◽  
Pedro F. MARRERO ◽  
Diego HARO

The expression of several genes involved in fatty acid metabolism is regulated by peroxisome proliferator-activated receptors (PPARs). To gain more insight into the control of carnitine palmitoyltransferase (CPT) gene expression, we examined the transcriptional regulation of the human CPT II gene. We show that the 5′-flanking region of this gene is transcriptionally active and binds PPARα in vivo in a chromatin immunoprecipitation assay. In addition, we characterized the peroxisome proliferator-responsive element (PPRE) in the proximal promoter of the CPT II gene, which appears to be a novel PPRE. The sequence of this PPRE contains one half-site which is a perfect consensus sequence (TGACCT) but no clearly recognizable second half-site (CAGCAC); this part of the sequence contains only one match to the consensus, which seems to be irrelevant for the binding of PPARα. As expected, other members of the nuclear receptor superfamily also bind to this element and repress the activation mediated by PPARα, thus showing that the interplay between several nuclear receptors may regulate the entry of fatty acids into the mitochondria, a crucial step in their metabolism.


2005 ◽  
Vol 390 (1) ◽  
pp. 189-197 ◽  
Author(s):  
Nuria Pescador ◽  
Yolanda Cuevas ◽  
Salvador Naranjo ◽  
Marisa Alcaide ◽  
Diego Villar ◽  
...  

Low oxygen levels induce an adaptive response in cells through the activation of HIFs (hypoxia-inducible factors). These transcription factors are mainly regulated by a group of proline hydroxylases that, in the presence of oxygen, target HIF for degradation. The expression of two such enzymes, EGLN1 [EGL nine homologous protein 1, where EGL stands for egg laying defective (Caenorhabditis elegans gene)] and EGLN3, is induced by hypoxia through a negative feedback loop, and we have demonstrated recently that hypoxic induction of EGLN expression is HIF-dependent. In the present study, we have identified an HRE (hypoxia response element) in the region of the EGLN3 gene using a combination of bioinformatics and biological approaches. Initially, we isolated a number of HRE consensus sequences in a region of 40 kb around the human EGLN3 gene and studied their evolutionary conservation. Subsequently, we examined the functionality of the conserved HRE sequences in reporter and chromatin precipitation assays. One of the HREs, located within a conserved region of the first intron of the EGLN3 gene 12 kb downstream of the transcription initiation site, bound HIF in vivo. Furthermore, this sequence was able to drive reporter gene expression under conditions of hypoxia in an HRE-dependent manner. Indeed, we were able to demonstrate that HIF was necessary and sufficient to induce gene expression from this enhancer sequence.


2009 ◽  
Vol 83 (11) ◽  
pp. 5854-5863 ◽  
Author(s):  
Jürg P. F. Nüesch ◽  
Séverine Bär ◽  
Sylvie Lachmann ◽  
Jean Rommelaere

ABSTRACT The propagation of autonomous parvoviruses is strongly dependent on the phosphorylation of the major nonstructural protein NS1 by members of the protein kinase C (PKC) family. Minute virus of mice (MVM) replication is accompanied by changes in the overall phosphorylation pattern of NS1, which is newly modified at consensus PKC sites. These changes result, at least in part, from the ability of MVM to modulate the PDK-1/PKC pathway, leading to activation and redistribution of both PDK-1 and PKCη. We show that proteins of the ezrin-radixin-moesin (ERM) family are essential for virus propagation and spreading through their functions as adaptors for PKCη. MVM infection led to redistribution of radixin and moesin in the cell, resulting in increased colocalization of these proteins with PKCη. Radixin was found to control the PKCη-driven phosphorylation of NS1 and newly synthesized capsids in vivo. Conversely, radixin phosphorylation and activation were driven by the NS1/CKIIα complex. Altogether, these data argue for ERM proteins being both targets and modulators of parvovirus infection.


1993 ◽  
Vol 13 (11) ◽  
pp. 7180-7190 ◽  
Author(s):  
W Kaszubska ◽  
R Hooft van Huijsduijnen ◽  
P Ghersa ◽  
A M DeRaemy-Schenk ◽  
B P Chen ◽  
...  

We previously reported that NF-kappa B and a complex we referred to as NF-ELAM1 play a central role in cytokine-induced expression of the E-selectin gene. In this study we identify cyclic AMP (cAMP)-independent members of the ATF family binding specifically to the NF-ELAM1 promoter element. The NF-ELAM1 element (TGACATCA) differs by a single nucleotide substitution from the cAMP-responsive element consensus sequence. We demonstrate that this sequence operates in a cAMP-independent manner to induce transcription and thus define it as a non-cAMP-responsive element (NCRE). We show that ATFa is a component of the NF-ELAM1 complex and its overexpression activates the E-selectin promoter. In addition, ATFa, ATF2, and ATF3 interact directly with NF-kappa B in vitro, linking two unrelated families of transcription factors in a novel protein-protein interaction. Furthermore, we demonstrate that the ability of overexpressed NF-kappa B to transactivate the E-selectin promoter in vivo is dependent on the NF-ELAM1 complex. Our results suggest that a direct interaction between ATFs and NF-kappa B is, at least in part, the mechanism by which these factors specifically regulate E-selectin promoter activity.


1998 ◽  
Vol 18 (1) ◽  
pp. 409-419 ◽  
Author(s):  
Laurent Deleu ◽  
François Fuks ◽  
Dimitry Spitkovsky ◽  
Rita Hörlein ◽  
Steffen Faisst ◽  
...  

ABSTRACT The minute virus of mice, an autonomous parvovirus, requires entry of host cells into the S phase of the cell cycle for its DNA to be amplified and its genes expressed. This work focuses on the P4 promoter of this parvovirus, which directs expression of the transcription unit encoding the parvoviral nonstructural polypeptides. These notably include protein NS1, necessary for the S-phase-dependent burst of parvoviral DNA amplification and gene expression. The activity of the P4 promoter is shown to be regulated in a cell cycle-dependent manner. At the G1/S-phase transition, the promoter is activated via a cis-acting DNA element which interacts with phase-specific complexes containing the cellular transcription factor E2F. It is inhibited, on the other hand, in cells arrested in G1 due to contact inhibition. This inhibitory effect is not observed in serum-starved cells. It is mediated in cis by cyclic AMP response elements (CREs). Unlike serum-starved cells, confluent cells accumulate the cyclin-dependent kinase inhibitor p27, suggesting that the switch from CRE-mediated activation to CRE-mediated repression involves the p27 protein. Accordingly, plasmid-driven overexpression of p27 causes down-modulation of promoter P4 in growing cells, depending on the presence of at least two functional CREs. No such effect is observed with two other cyclin-dependent kinase inhibitors, p16 and p21. Given the importance of P4-driven synthesis of protein NS1 in parvoviral DNA amplification and gene expression, the stringent S-phase dependency of promoter P4 is likely a major determinant of the absolute requirement of the minute virus of mice for host cell proliferation.


2004 ◽  
Vol 78 (17) ◽  
pp. 9474-9486 ◽  
Author(s):  
Refael Itah ◽  
Jacov Tal ◽  
Claytus Davis

ABSTRACT Productive infection by the murine autonomous parvovirus minute virus of mice (MVM) depends on a dividing cell population and its differentiation state. We have extended the in vivo analysis of the MVM host cell type range into the developing embryo by in utero inoculation followed by further gestation. The fibrotropic p strain (MVMp) and the lymphotropic i strain (MVMi) did not productively infect the early mouse embryo but were able to infect overlapping sets of cell types in the mid- or late-gestation embryo. Both MVMp and MVMi infected developing bone primordia, notochord, central nervous system, and dorsal root ganglia. MVMp exhibited extensive infection in fibroblasts, in the epithelia of lung and developing nose, and, to a lesser extent, in the gut. MVMi also infected endothelium. The data indicated that the host ranges of the two MVM strains consist of overlapping sets of cell types that are broader than previously known from neonate and in vitro infection experiments. The correlation between MVM host cell types and the cell types that activate the transgenic P4 promoter is consistent with the hypothesis that activation of the incoming viral P4 promoter by the host cell is one of the host range determinants of MVM.


Sign in / Sign up

Export Citation Format

Share Document