scholarly journals A silkworm–baculovirus model for assessing the therapeutic effects of antiviral compounds: characterization and application to the isolation of antivirals from traditional medicines

2008 ◽  
Vol 89 (1) ◽  
pp. 188-194 ◽  
Author(s):  
Yutaka Orihara ◽  
Hiroshi Hamamoto ◽  
Hiroshi Kasuga ◽  
Toru Shimada ◽  
Yasushi Kawaguchi ◽  
...  

Ganciclovir, foscarnet, vidarabine and ribavirin, which are used to treat viral infections in humans, inhibited the proliferation of a baculovirus (Bombyx mori nucleopolyhedrovirus) in BmN4 cells, a cultured silkworm cell line. These antiviral agents inhibited the proliferation of baculovirus in silkworm body fluid and had therapeutic effects. Using the silkworm infection model, the antiviral activity of Kampo medicines was screened and it was found that cinnamon bark, a component of the traditional Japanese medicine Mao-to, had a therapeutic effect. Based on the therapeutic activity, the antiviral substance was purified. Nuclear magnetic resonance analysis of the purified fraction revealed that the antiviral activity was due to cinnzeylanine, which has previously been isolated from Cinnamomum zeylanicum. Cinnzeylanine inhibits the proliferation of herpes simplex virus type 1 in Vero cells. These results suggest that the silkworm–baculovirus infection model is useful for screening antiviral agents that are effective for treating humans infected with DNA viruses.

Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4264 ◽  
Author(s):  
Spengler ◽  
Kincses ◽  
Mosolygó ◽  
Marć ◽  
Nové ◽  
...  

Selenoesters and the selenium isostere of phthalic anhydride are bioactive selenium compounds with a reported promising activity in cancer, both due to their cytotoxicity and capacity to reverse multidrug resistance. Herein we evaluate the antiviral, the biofilm inhibitory, the antibacterial and the antifungal activities of these compounds. The selenoanhydride and 7 out of the 10 selenoesters were especially potent antiviral agents in Vero cells infected with herpes simplex virus-2 (HSV-2). In addition, the tested selenium derivatives showed interesting antibiofilm activity against Staphylococcus aureus and Salmonella enterica serovar Typhimurium, as well as a moderate antifungal activity in resistant strains of Candida spp. They were inactive against anaerobes, which may indicate that the mechanism of action of these derivatives depends on the presence of oxygen. The capacity to inhibit the bacterial biofilm can be of particular interest in the treatment of nosocomial infections and in the coating of surfaces of prostheses. Finally, the potent antiviral activity observed converts these selenium derivatives into promising antiviral agents with potential medical applications.


Planta Medica ◽  
2020 ◽  
Vol 86 (04) ◽  
pp. 267-275 ◽  
Author(s):  
Massimo Rittà ◽  
Arianna Marengo ◽  
Andrea Civra ◽  
David Lembo ◽  
Cecilia Cagliero ◽  
...  

AbstractInfections caused by HSV-2 are a public health concern worldwide, and there is still a great demand for the discovery of novel anti-herpes virus agents effective against strains resistant to current antiviral agents. In this context, medicinal plants represent an alternative source of active compounds for developing efficient antiviral therapies. The aim of this study was to evaluate the antiviral activity of Arisaema tortuosum, a plant used in the traditional medicine of India. A chloroform soluble fraction of the leaves exhibited anti-HSV-2 activity with a selectivity index of 758. The extract was also active against acyclovir-resistant HSV-2 and HSV-1. The mechanism of action of the extract was investigated evidencing inhibition of both early and late events of the HSV-2 replicative cycle. A HPLC-PDA-MS/MS analysis showed the presence of flavonoids including apigenin and luteolin in the chloroform extract (CE). Apigenin and luteolin showed a high inhibitory activity with EC50 values of 0.05 and 0.41 µg/mL, respectively. Both compounds exhibited antiviral activity when added up to 6 h post infection and were able to reduce the viral progeny production. In addition, apigenin interfered with cell-to-cell virus spread.


Author(s):  
Farah Wasim Aribi Al-Zoobaee ◽  
Loo Yee Shen ◽  
Sajesh K. Veettil ◽  
Divya Gopinath ◽  
Mari Kannan Maharajan ◽  
...  

Cancer therapy may be complicated and compromised by viral infections, including oral herpes simplex virus (HSV) infection. This network meta-analysis aimed to identify the best antiviral agent to prevent or treat oral HSV infection in patients being treated for cancer. A search was conducted for trials published since inception until the 10th of May 2020 in MEDLINE, EMBASE and the Cochrane Central Register of Controlled Trials. A network meta-analysis was performed on the data from randomized controlled trials that assessed antiviral agents for preventive or therapeutic activity vs. placebo, no treatment or any other active intervention in patients being treated for cancer. The agents were ranked according to their effectiveness in the prevention of oral HSV using surface under the cumulative ranking (SUCRA). Grading of Recommendations, Assessment, Development and Evaluations (GRADE) was used to assess the certainty of the evidence. In total, 16 articles were included. The pooled relative risk (RR) to develop oral HSV infection in the acyclovir group was 0.17 (95% CI: 0.10, 0.30), compared to 0.22 (95% CI: 0.06, 0.77) in the valacyclovir group. Acyclovir ranked highest for the prevention of oral HSV followed by valacyclovir. Subgroup analysis with different acyclovir regimens revealed that the best regimens in terms of HSV-1 prevention were 750 mg/m2 acyclovir administered intravenously followed by 1600 mg per day orally. Acyclovir (250 mg/m2 per day) administered intravenously was the least effective against the prevention of oral HSV.


1992 ◽  
Vol 3 (2) ◽  
pp. 85-94 ◽  
Author(s):  
D. Sutton ◽  
J. Taylor ◽  
T. H. Bacon ◽  
M. R. Boyd

Combinations of penciclovir (PCV) with other antiviral agents (acyclovir, ACV; ganciclovir, GCV; foscarnet, PFA; azido-thymidine, AZT) or with human interferons (HulFN-α,β,γ) were tested for inhibitory activity against herpes simplex virus type 1 (HSV-1) or type 2 (HSV-2) in cell culture. The antiviral interactions observed between combinations of PCV with ACV or GCV were purely additive. Combinations of PCV with HulFNs demonstrated highly synergistic anti-herpesvirus activity; some synergy was also detected between PCV and PFA against HSV-1. High concentrations of AZT inhibited the antiviral activity of PCV; this antagonism was competitive. In more detailed studies it was demonstrated that high concentrations of AZT also inhibited the antiviral activity of ACV, and that ACV was more sensitive to this antagonism than PCV. It was concluded that the antagonism was unlikely to have clinical significance.


2021 ◽  
Vol 8 ◽  
Author(s):  
Manuel Gómez-García ◽  
Héctor Puente ◽  
Héctor Argüello ◽  
Óscar Mencía-Ares ◽  
Pedro Rubio ◽  
...  

Organic acid and essential oils (EOs), well-known antimicrobials, could also possess antiviral activity, a characteristic which has not been completely addressed up to now. In this study, the effect of two organic acids (formic acid and sodium salt of coconut fatty acid distillates) and two single EO compounds (thymol and cinnamaldehye) was evaluated against porcine epidemic diarrhea virus (PEDV). The concentration used for each compound was established by cytotoxicity assays in Vero cells. The antiviral activity was then evaluated at three multiplicities of infection (MOIs) through visual cytopathic effect (CPE) evaluation and an alamarBlue assay as well as real-time reverse-transcription PCR (RT-qPCR) and viral titration of cell supernatants. Formic acid at at a dose of 1,200 ppm was the only compound which showed antiviral activity, with a weak reduction of CPE caused by PEDV. Through the alamarBlue fluorescence assay, we showed a significant anti-CPE effect of formic acid which could not be observed by using an inverted optical microscope. RT-qPCR and infectivity analysis also showed that formic acid significantly reduced viral RNA and viral titers in a PEDV MOI-dependent manner. Our results suggest that the antiviral activity of formic acid could be associated to its inhibitory effect on viral replication. Further studies are required to explore the anti-PEDV activity of formic acid under field conditions alone or together with other antiviral agents.


Author(s):  
Antonella Di Sotto ◽  
Silvia Di Giacomo ◽  
Donatella Amatore ◽  
Marcello Locatelli ◽  
Annabella Vitalone ◽  
...  

DR2B and DR2C extracts, from peel of commercially and physiologically ripe eggplants, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions into the host cells. The antioxidative cytoprotective effects against tBOOH-induced damage was assessed in Caco2 cells, while the antiviral activity was studied in Vero cells; phenolic and anthocyanin fingerprint was characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified. DR2C resulted able to partly counteract the tBOOH-induced cytotoxicity, with a remarkable lowering of lactate metabolism under both normoxia and hypoxia. DR2B and DR2C reduced ROS production, possessed scavenging and chelating properties. Interestingly, DR2C increased intracellular GSH levels. Furthermore, DR2C inhibited the HSV-1 replication when added for 24 h after viral adsorption, as also confirmed by the reduction of many viral proteins expression. Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be correlated to its antioxidant properties. Although further studies are needed to better characterize DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent.


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1111 ◽  
Author(s):  
Mayra A. Meléndez-Villanueva ◽  
Karla Morán-Santibañez ◽  
Juan J. Martínez-Sanmiguel ◽  
Raúl Rangel-López ◽  
Marco A. Garza-Navarro ◽  
...  

Measles virus (MeV) is a paramyxovirus that infects humans, principally children. Despite the existence of an effective and safe vaccine, the number of cases of measles has increased due to lack of vaccination coverage. The World Health Organization (WHO) reports that the number of cases worldwide multiplied fourfold between January and March 2019, to 112,000. Today, there is no treatment available for MeV. In recent years, it has been demonstrated that natural extracts (herbal or algal) with antiviral activity can also work as reducing agents that, in combination with nanotechnology, offer an innovative option to counteract viral infections. Here, we synthetized and evaluated the antiviral activity of gold nanoparticles using garlic extract (Allium sativa) as a reducing agent (AuNPs-As). These nanoparticles actively inhibited MeV replication in Vero cells at a 50% effective concentration (EC50) of 8.829 µg/mL, and the selectivity index (SI) obtained was 16.05. AuNPs-As likely inhibit viral infection by blocking viral particles directly, showing a potent virucidal effect. Gold nanoparticles may be useful as a promising strategy for treating and controlling the infection of MeV and other related enveloped viruses.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Vinod Kumar Pandey ◽  
Zehra Tusi ◽  
Sumerah Tusi ◽  
Madhawanand Joshi

A series of novel 4-amino-5-mercapto-3-[(3-aralkyl amido/imidoalkyl) phenyl]-1,2,4-triazoles (5a-d) were obtained by treating m-(aralkyl amido/imidoalkyl) benzoic acid hydrazides (3a-d) with carbon disulphide in alcoholic KOH and hydrazine hydrate, respectively. These triazole derivatives were employed in the synthesis of 5-[(3′-aralkyl amido/imidoalkyl) phenyl]-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazines (6a-d). The newly synthesized compounds were evaluated for their antiviral activity against two animal viruses, namely, Japanese encephalitis virus (JEV) strain P20778 and herpes simplex virus-1 (HSV-1) strain 753166.


2021 ◽  
Vol 22 (9) ◽  
pp. 4668
Author(s):  
Jin Zhao ◽  
Ruiting Li ◽  
Yanjun Li ◽  
Jiaoshan Chen ◽  
Fengling Feng ◽  
...  

Deeply understanding the virus-host interaction is a prerequisite for developing effective anti-viral strategies. Traditionally, the transporter associated with antigen processing type 1 (TAP1) is critical for antigen presentation to regulate adaptive immunity. However, its role in controlling viral infections through modulating innate immune signaling is not yet fully understood. In the present study, we reported that TAP1, as a product of interferon-stimulated genes (ISGs), had broadly antiviral activity against various viruses such as herpes simplex virus 1 (HSV-1), adenoviruses (AdV), vesicular stomatitis virus (VSV), dengue virus (DENV), Zika virus (ZIKV), and influenza virus (PR8) etc. This antiviral activity by TAP1 was further confirmed by series of loss-of-function and gain-of-function experiments. Our further investigation revealed that TAP1 significantly promoted the interferon (IFN)-β production through activating the TANK binding kinase-1 (TBK1) and the interferon regulatory factor 3 (IRF3) signaling transduction. Our work highlighted the broadly anti-viral function of TAP1 by modulating innate immunity, which is independent of its well-known function of antigen presentation. This study will provide insights into developing novel vaccination and immunotherapy strategies against emerging infectious diseases.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 406
Author(s):  
Abdalla E. M. Salih ◽  
Bathini Thissera ◽  
Mohammed Yaseen ◽  
Ahmed S. I. Hassane ◽  
Hesham R. El-Seedi ◽  
...  

SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is a novel coronavirus strain that emerged at the end of 2019, causing millions of deaths so far. Despite enormous efforts being made through various drug discovery campaigns, there is still a desperate need for treatments with high efficacy and selectivity. Recently, marine sulfated polysaccharides (MSPs) have earned significant attention and are widely examined against many viral infections. This article attempted to produce a comprehensive report about MSPs from different marine sources alongside their antiviral effects against various viral species covering the last 25 years of research articles. Additionally, these reported MSPs were subjected to molecular docking and dynamic simulation experiments to ascertain potential interactions with both the receptor-binding domain (RBD) of SARS CoV-2′s spike protein (S-protein) and human angiotensin-converting enzyme-2 (ACE2). The possible binding sites on both S-protein’s RBD and ACE2 were determined based on how they bind to heparin, which has been reported to exhibit significant antiviral activity against SARS CoV-2 through binding to RBD, preventing the virus from affecting ACE2. Moreover, our modeling results illustrate that heparin can also bind to and block ACE2, acting as a competitor and protective agent against SARS CoV-2 infection. Nine of the investigated MSPs candidates exhibited promising results, taking into consideration the newly emerged SARS CoV-2 variants, of which five were not previously reported to exert antiviral activity against SARS CoV-2, including sulfated galactofucan (1), sulfated polymannuroguluronate (SPMG) (2), sulfated mannan (3), sulfated heterorhamnan (8), and chondroitin sulfate E (CS-E) (9). These results shed light on the importance of sulfated polysaccharides as potential SARS-CoV-2 inhibitors.


Sign in / Sign up

Export Citation Format

Share Document