scholarly journals Denisovan Ancestry in East Eurasian and Native American Populations.

2015 ◽  
Author(s):  
Pengfei Qin ◽  
Mark Stoneking

Although initial studies suggested that Denisovan ancestry was found only in modern human populations from island Southeast Asia and Oceania, more recent studies have suggested that Denisovan ancestry may be more widespread. However, the geographic extent of Denisovan ancestry has not been determined, and moreover the relationship between the Denisovan ancestry in Oceania and that elsewhere has not been studied. Here we analyze genome-wide SNP data from 2493 individuals from 221 worldwide populations, and show that there is a widespread signal of a very low level of Denisovan ancestry across Eastern Eurasian and Native American (EE/NA) populations. We also verify a higher level of Denisovan ancestry in Oceania than that in EE/NA; the Denisovan ancestry in Oceania is correlated with the amount of New Guinea ancestry, but not the amount of Australian ancestry, indicating that recent gene flow from New Guinea likely accounts for signals of Denisovan ancestry across Oceania. However, Denisovan ancestry in EE/NA populations is equally correlated with their New Guinea or their Australian ancestry, suggesting a common source for the Denisovan ancestry in EE/NA and Oceanian populations. Our results suggest that Denisovan ancestry in EE/NA is derived either from common ancestry with, or gene flow from, the common ancestor of New Guineans and Australians, indicating a more complex history involving East Eurasians and Oceanians than previously suspected.

Author(s):  
Timothy Jinam ◽  
Yosuke Kawai ◽  
Yoichiro Kamatani ◽  
Shunro Sonoda ◽  
Kanro Makisumi ◽  
...  

AbstractThe “Dual Structure” model on the formation of the modern Japanese population assumes that the indigenous hunter-gathering population (symbolized as Jomon people) admixed with rice-farming population (symbolized as Yayoi people) who migrated from the Asian continent after the Yayoi period started. The Jomon component remained high both in Ainu and Okinawa people who mainly reside in northern and southern Japan, respectively, while the Yayoi component is higher in the mainland Japanese (Yamato people). The model has been well supported by genetic data, but the Yamato population was mostly represented by people from Tokyo area. We generated new genome-wide SNP data using Japonica Array for 45 individuals in Izumo City of Shimane Prefecture and for 72 individuals in Makurazaki City of Kagoshima Prefecture in Southern Kyushu, and compared these data with those of other human populations in East Asia, including BioBank Japan data. Using principal component analysis, phylogenetic network, and f4 tests, we found that Izumo, Makurazaki, and Tohoku populations are slightly differentiated from Kanto (including Tokyo), Tokai, and Kinki regions. These results suggest the substructure within Mainland Japanese maybe caused by multiple migration events from the Asian continent following the Jomon period, and we propose a modified version of “Dual Structure” model called the “Inner-Dual Structure” model.


2019 ◽  
Vol 110 (3) ◽  
pp. 361-369 ◽  
Author(s):  
Katherine L Bell ◽  
Chris C Nice ◽  
Darrin Hulsey

Abstract In recent decades, an increased understanding of molecular ecology has led to a reinterpretation of the role of gene flow during the evolution of reproductive isolation and biological novelty. For example, even in the face of ongoing gene flow strong selection may maintain divergent polymorphisms, or gene flow may introduce novel biological diversity via hybridization and introgression from a divergent species. Herein, we elucidate the evolutionary history and genomic basis of a trophically polymorphic trait in a species of cichlid fish, Herichthys minckleyi. We explored genetic variation at 3 hierarchical levels; between H. minckleyi (n = 69) and a closely related species Herichthys cyanoguttatus (n = 10), between H. minckleyi individuals from 2 geographic locations, and finally between individuals with alternate morphotypes at both a genome-wide and locus-specific scale. We found limited support for the hypothesis that the H. minckleyi polymorphism is the result of ongoing hybridization between the 2 species. Within H. minckleyi we found evidence of geographic genetic structure, and using traditional population genetic analyses found that individuals of alternate morphotypes within a pool appear to be panmictic. However, when we used a locus-specific approach to examine the relationship between multi-locus genotype, tooth size, and geographic sampling, we found the first evidence for molecular genetic differences between the H. minckleyi morphotypes.


2017 ◽  
Author(s):  
John Hawks

AbstractHuman populations have a complex history of introgression and of changing population size. Human genetic variation has been affected by both these processes, so that inference of past population size depends upon the pattern of gene flow and introgression among past populations. One remarkable aspect of human population history as inferred from genetics is a consistent “wave” of larger effective population size, prior to the bottlenecks and expansions of the last 100,000 years. Here I carry out a series of simulations to investigate how introgression and gene flow from genetically divergent ancestral populations affect the inference of ancestral effective population size. Both introgression and gene flow from an extinct, genetically divergent population consistently produce a wave in the history of inferred effective population size. The time and amplitude of the wave reflect the time of origin of the genetically divergent ancestral populations and the strength of introgression or gene flow. These results demonstrate that even small fractions of introgression or gene flow from ancient populations may have large effects on the inference of effective population size.


2008 ◽  
Vol 25 (8) ◽  
pp. 1750-1761 ◽  
Author(s):  
R. Kimura ◽  
J. Ohashi ◽  
Y. Matsumura ◽  
M. Nakazawa ◽  
T. Inaoka ◽  
...  

2018 ◽  
Author(s):  
Chuan-Chao Wang ◽  
Sabine Reinhold ◽  
Alexey Kalmykov ◽  
Antje Wissgott ◽  
Guido Brandt ◽  
...  

AbstractArchaeogenetic studies have described the formation of Eurasian ‘steppe ancestry’ as a mixture of Eastern and Caucasus hunter-gatherers. However, it remains unclear when and where this ancestry arose and whether it was related to a horizon of cultural innovations in the 4thmillennium BCE that subsequently facilitated the advance of pastoral societies likely linked to the dispersal of Indo-European languages. To address this, we generated genome-wide SNP data from 45 prehistoric individuals along a 3000-year temporal transect in the North Caucasus. We observe a genetic separation between the groups of the Caucasus and those of the adjacent steppe. The Caucasus groups are genetically similar to contemporaneous populations south of it, suggesting that – unlike today – the Caucasus acted as a bridge rather than an insurmountable barrier to human movement. The steppe groups from Yamnaya and subsequent pastoralist cultures show evidence for previously undetected farmer-related ancestry from different contact zones, while Steppe Maykop individuals harbour additional Upper Palaeolithic Siberian and Native American related ancestry.


2019 ◽  
Vol 116 (31) ◽  
pp. 15327-15332 ◽  
Author(s):  
João C. Teixeira ◽  
Alan Cooper

The dispersal of anatomically modern human populations out of Africa and across much of the rest of the world around 55 to 50 thousand years before present (ka) is recorded genetically by the multiple hominin groups they met and interbred with along the way, including the Neandertals and Denisovans. The signatures of these introgression events remain preserved in the genomes of modern-day populations, and provide a powerful record of the sequence and timing of these early migrations, with Asia proving a particularly complex area. At least 3 different hominin groups appear to have been involved in Asia, of which only the Denisovans are currently known. Several interbreeding events are inferred to have taken place east of Wallace’s Line, consistent with archaeological evidence of widespread and early hominin presence in the area. However, archaeological and fossil evidence indicates archaic hominins had not spread as far as the Sahul continent (New Guinea, Australia, and Tasmania), where recent genetic evidence remains enigmatic.


Author(s):  
Neus Font-Porterias ◽  
Rocio Caro-Consuegra ◽  
Marcel Lucas-Sánchez ◽  
Marie Lopez ◽  
Aaron Giménez ◽  
...  

Abstract Demographic history plays a major role in shaping the distribution of genomic variation. Yet the interaction between different demographic forces and their effects in the genomes is not fully resolved in human populations. Here we focus on the Roma population, the largest transnational ethnic minority in Europe. They have a South Asian origin and their demographic history is characterized by recent dispersals, multiple founder events and extensive gene flow from non-Roma groups. Through the analyses of new high-coverage whole exome sequences and genome-wide array data for 89 Iberian Roma individuals together with forward simulations, we show that founder effects have reduced their genetic diversity and proportion of rare variants, gene flow has counteracted the increase in mutational load, runs of homozygosity show ancestry-specific patterns of accumulation of deleterious homozygotes, and selection signals primarily derive from pre-admixture adaptation in the Roma population sources. The present study shows how two demographic forces, bottlenecks and admixture, act in opposite directions and have long-term balancing effects on the Roma genomes. Understanding how demography and gene flow shape the genome of an admixed population provides an opportunity to elucidate how genomic variation is modelled in human populations.


2018 ◽  
Author(s):  
Miguel Martín Álvarez-Álvarez ◽  
Neil Risch ◽  
Christopher R. Gignoux ◽  
Scott Huntsman ◽  
Elad Ziv ◽  
...  

AbstractThe Sephardim are a major Jewish ethnic division whose origins can be traced back to the Iberian Peninsula. We used genome-wide SNP data to investigate the degree of Sephardic admixture in seven populations from the Iberian Peninsula and surrounding regions in the aftermath of their religious persecution starting in the late 14th century. To this end, we used Eastern Mediterranean (from South Italy, Greece and Israel) and North African (Tunisian and Moroccan) populations as proxies for the major ancestral components found in the target populations and carried out unlinked- and linked-marker analyses on the available genetic data. We report evidence of Sephardic ancestry in some of our Iberian samples, as well as in North Italy and Tunisia. We find the Sephardic admixture to be more recent relative to the Berber admixture following an out-of-Iberia geographic dispersal, suggesting Sephardic gene flow from Spain outwards. We also report some of the challenges in assigning Sephardic ancestry to potentially admixed individuals due to the lack of a clear genetic signature.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Hong Shi ◽  
Bing Su

Modern humans have gone through varied processes of genetic adaptations when their ancestors left Africa about 100,000 years ago. The environmental stresses and the social transitions (e.g., emergence of the Neolithic culture) have been acting as the major selective forces reshaping the genetic make-up of human populations. Genetic adaptations have occurred in many aspects of human life, including the adaptation to cold climate and high-altitude hypoxia, the improved ability of defending infectious diseases, and the polished strategy of utilizing new diet with the advent of agriculture. At the same time, the adaptations once developed during evolution may sometimes generate deleterious effects (e.g., susceptibility to diseases) when facing new environmental and social changes. The molecular (especially the genome-wide screening of genetic variations) studies in recent years have detected many genetic variants that show signals of Darwinian positive selection in modern human populations, which will not only provide a better understanding of human evolutionary history, but also help dissecting the genetic basis of human complex diseases.


Sign in / Sign up

Export Citation Format

Share Document