scholarly journals SPARC promotes cell invasion in vivo by decreasing type IV collagen levels in the basement membrane

2016 ◽  
Author(s):  
Meghan A Morrissey ◽  
Ranjay Jayadev ◽  
Ginger R Miley ◽  
Catherine A Blebea ◽  
Qiuyi Chi ◽  
...  

Overexpression of SPARC, a collagen-binding glycoprotein, is strongly associated with tumor invasion through extracellular matrix in many aggressive cancers. SPARC regulates numerous cellular processes including integrin-mediated cell adhesion, cell signaling pathways, and extracellular matrix assembly; however, the mechanism by which SPARC promotes cell invasion in vivo remains unclear. A main obstacle in understanding SPARC function has been the difficulty of visualizing and experimentally examining the dynamic interactions between invasive cells, extracellular matrix and SPARC in native tissue environments. Using the model of anchor cell invasion through the basement membrane (BM) extracellular matrix in Caenorhabditis elegans, we find that SPARC overexpression is highly pro-invasive and rescues BM transmigration in mutants with defects in diverse aspects of invasion, including cell polarity, invadopodia formation, and matrix metalloproteinase expression. By examining BM assembly, we find that overexpression of SPARC specifically decreases levels of BM type IV collagen, a crucial structural BM component. Reduction of type IV collagen mimicked SPARC overexpression and was sufficient to promote invasion. Tissue-specific overexpression and photobleaching experiments revealed that SPARC acts extracellularly to inhibit collagen incorporation into BM. By reducing endogenous SPARC, we also found that SPARC functions normally to traffic collagen from its site of synthesis to tissues that do not express collagen. We propose that a surplus of SPARC disrupts extracellular collagen trafficking and reduces BM collagen incorporation, thus weakening the BM barrier and dramatically enhancing its ability to be breached by invasive cells.

PLoS Genetics ◽  
2016 ◽  
Vol 12 (2) ◽  
pp. e1005905 ◽  
Author(s):  
Meghan A. Morrissey ◽  
Ranjay Jayadev ◽  
Ginger R. Miley ◽  
Catherine A. Blebea ◽  
Qiuyi Chi ◽  
...  

1985 ◽  
Vol 73 (1) ◽  
pp. 19-32
Author(s):  
W.C. Young ◽  
I.M. Herman

We utilized fluorescence microscopy and affinity-purified antibodies to probe the form and function of cytoplasmic actin in endothelial cells (EC) recovering from injury and grown on extracellular matrices in vitro. Bovine aortic EC were seeded onto glass microscope coverslips that had been coated with either BSA, fibronectin, type I and III (interstitial) collagens, type IV (basement membrane) collagen or gelatin. After EC that had been grown on glass, glass-BSA or extracellular matrix-coated coverslips reached confluence, a 300–400 micron zone of cells was mechanically removed to stimulate EC migration and proliferation. Post-injury EC movements were monitored with time-lapse, phase-contrast videomicrography before fixation for actin localization with fluorescence microscopy using affinity-purified antibodies. We found that the number of stress fibres within EC was inversely proportional to the rate of movement; and, the rates of movement for EC grown on glass or glass-BSA were approximately eight times faster than EC grown on gelatin or type IV collagen (X velocity = 0.5 micron/min versus 0.06 micron/min). EC movements on fibronectin and interstitial collagens were similar (X velocity = 0.2 micron/min). These results suggest that extracellular matrix molecules modulate EC stress fibre expression, thereby producing alterations in the cytoskeleton and the resultant EC movements that follow injury in vitro. Moreover, the induction of stress fibres in the presence of basement membrane (type IV) collagen may explain the failure of aortic EC to migrate and repopulate wounded regions of intima during atherogenesis in vivo.


2006 ◽  
Vol 26 (3) ◽  
pp. 380-392 ◽  
Author(s):  
Ichiro Hirahara ◽  
Eiji Kusano ◽  
Satoru Yanagiba ◽  
Yukio Miyata ◽  
Yasuhiro Ando ◽  
...  

Background Peritoneal dialysis (PD) is a common treatment for patients with reduced or absent renal function. Long-term PD leads to peritoneal injury with structural changes and functional decline, such as ultrafiltration loss. At worst, peritoneal injury leads to encapsulating peritoneal sclerosis, a serious complication of PD. Glucose degradation products contained in PD fluids contribute to the bioincompatibility of conventional PD fluids. Methylglyoxal (MGO) is an extremely toxic glucose degradation product. The present study examined the injurious effect of MGO on peritoneum in vivo. Methods Male Sprague–Dawley rats ( n = 6) were administered PD fluids (pH 5.0) containing 0, 0.66, 2, 6.6, or 20 mmol/L MGO every day for 21 days. On day 22, peritoneal function was estimated by the peritoneal equilibration test. Drained dialysate was analyzed for type IV collagen-7S, matrix metalloproteinase (MMP), and vascular endothelial growth factor (VEGF). Histological analysis was also performed. Results In rats receiving PD fluids containing more than 0.66 mmol/L MGO, peritoneal function decreased significantly and levels of type IV collagen-7S and MMP-2 in drained dialysate increased significantly. In the 20-mmol/L MGO-treated rats, loss of body weight, expression of VEGF, thickening of the peritoneum, and formation of abdominal cocoon were induced. MMP-2 and VEGF were produced by infiltrating cells in the peritoneum. Type IV collagen was detected in basement membrane of microvessels. Conclusion MGO induced not only peritoneal injury but also abdominal cocoon formation in vivo. The decline of peritoneal function may result from reconstitution of microvessel basement membrane or neovascularization.


1990 ◽  
Vol 111 (3) ◽  
pp. 1161-1170 ◽  
Author(s):  
R M Nitkin ◽  
T C Rothschild

Agrin, an extracellular matrix-associated protein extracted from synapse-rich tissues, induces the accumulation of acetylcholine receptors (AChRs) and other synaptic components into discrete patches on cultured myotubes. The appearance of agrin-like molecules at neuromuscular junctions suggests that it may direct synaptic organization in vivo. In the present study we examined the role of extracellular matrix components in agrin-induced differentiation. We used immunohistochemical techniques to visualize the spatial and temporal distribution of laminin, a heparan sulfate proteoglycan (HSPG), fibronectin, and type IV collagen on cultured chick myotubes during agrin-induced aggregation of AChRs. Myotubes displayed significant amounts of laminin and HSPG, lesser amounts of type IV collagen, and little, if any, fibronectin. Agrin treatment caused cell surface laminin and HSPG to patch, while collagen and fibronectin distributions were generally unaffected. Many of the agrin-induced laminin and HSPG patches colocalized with AChR patches, raising the possibility of a causal relationship between matrix patching and AChR accumulations. However, patching of AChRs (complete within a few hours) preceded that of laminin or HSPG (not complete until 15-20 h), making it unlikely that matrix accumulations initiate AChR patching at agrin-induced sites. Conversely, when AChR patching was blocked by treatment with anti-AChR antibody mAb 35, agrin was still able to effect patching of laminin and HSPG. Taken together, these findings suggest that agrin-induced accumulations of AChR and laminin/HSPG are not mechanistically linked.


1981 ◽  
Vol 91 (1) ◽  
pp. 1-10 ◽  
Author(s):  
P Ekblom

Specific antibodies to laminin, type IV collagen, basement-membrane proteoglycan, and fibronectin have been used in immunofluorescence microscopy to study the development of basement membranes of the embryonic kidney. Kidney tubules are known to form from the nephrogenic mesenchyme as a result of an inductive tissue interaction. This involves a change in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses in the composition of the extracellular matrix. The undifferentiated mesenchyme expresses fibronectin but no detectable laminin, type IV collagen, or basement-membrane proteoglycan. During the inductive interaction, basement-membrane specific components (laminin, type IV collagen, basement membrane proteoglycan) become detectable in the induced area, whereas fibronectin is lost. While the differentiation to epithelial cells of the kidney requires an inductive interaction, the development of the vasculature seems to involve an ingrowth of cells which throughout development deposits basement-membrane specific components, as well as fibronectin. These cells form the endothelium and possibly also the mesangium of the glomerulus, and contribute to the formation of the glomerular basement membrane. An analysis of differentiation of the kidney mesenchyme in vitro in the absence of circulation supports these conclusions. Because a continuity with vasculature is required for glomerular endothelial cell differentiation, it is possible that these cells are derived from outside vasculature.


1985 ◽  
Vol 101 (4) ◽  
pp. 1175-1181 ◽  
Author(s):  
J M Chen ◽  
C D Little

Double immunofluorescence staining experiments designed to examine the synthesis and deposition of collagen types I and IV in cultured explants of embryonic mouse lung revealed the presence of connective tissue-like fibers that were immunoreactive with anti-type IV collagen antibodies. This observation is contrary to the widely accepted belief that type IV collagen is found only in sheet-like arrangements beneath epithelia or as a sheath-like layer enveloping bundles of nerve or muscle cells. The extracellular matrix produced by cells that migrate from embryonic mouse lung rudiments in vitro was examined by double indirect immunofluorescence microscopy. Affinity-purified monospecific polyclonal antibodies were used to examine cells after growth on glass or native collagen substrata. The data show that embryonic mesenchymal cells can produce organized fibers of type IV collagen that are not contained within a basement membrane, and that embryonic epithelial cells deposit fibers and strands of type IV collagen beneath their basal surface when grown on glass; however, when grown on a rat tail collagen substratum the epithelial cells produce a fine meshwork. To our knowledge this work represents the first report that type IV collagen can be organized by cells into a fibrous extracellular matrix that is not a basement membrane.


1992 ◽  
Vol 284 (1) ◽  
pp. 103-108 ◽  
Author(s):  
M S Stack ◽  
T L Moser ◽  
S V Pizzo

Plasminogen, the zymogen form of the serine proteinase plasmin, has been implicated in numerous physiological and pathological processes involving extracellular-matrix remodelling. We have previously demonstrated that the activation of plasminogen catalysed by tissue plasminogen activator is dramatically stimulated in the presence of basement-membrane-specific type IV collagen [Stack, Gonzalez-Gronow & Pizzo (1990) Biochemistry 29, 4966-4970]. The present paper describes the binding of plasminogen to type IV collagen. Plasminogen binds to both the alpha 1(IV) and alpha 2(IV) chains of basement-membrane collagen, with binding to the alpha 2(IV) chain preferentially inhibited by 6-aminohexanoic acid. This binding is specific and saturable, with Kd,app. values of 11.5 and 12.7 nM for collagen and gelatin respectively. Although collagen also binds to immobilized plasminogen, this interaction is unaffected by 6-aminohexanoic acid. Limited elastase proteolysis of plasminogen generated distinct collagen-binding fragments, which were identified as the kringle 1-3 and kringle 4 domains. No binding of collagen to mini-plasminogen was observed. These studies demonstrate a specific interaction between plasminogen and type IV collagen and provide further evidence for regulation of plasminogen activation by protein components of the extracellular matrix.


2003 ◽  
Vol 51 (9) ◽  
pp. 1177-1189 ◽  
Author(s):  
Christine V. Whiting ◽  
John F. Tarlton ◽  
Michael Bailey ◽  
Clare L. Morgan ◽  
Paul W. Bland

Transforming growth factor-β (TGF-β) depresses mucosal inflammation and upregulates extracellular matrix (ECM) deposition. We analyzed TGF-β receptors RI and RII as well as ECM components using the CD4+ T-cell-transplanted SCID mouse model of colitis. The principal change in colitis was an increased proportion of TGF-β RII+ mucosal mesenchymal cells, predominantly α-smooth muscle actin (SMA)+ myofibroblasts, co-expressing vimentin and basement membrane proteins, but not type I collagen. TGF-β RII+ SMA− fibroblasts producing type I collagen were also increased, particularly in areas of infiltration and in ulcers. Type IV collagen and laminin were distributed throughout the gut lamina propria in disease but were restricted to the basement membrane in controls. In areas of severe epithelial damage, type IV collagen was lost and increased type I collagen was observed. To examine ECM production by these cells, mucosal mesenchymal cells were isolated. Cultured cells exhibited a similar phenotype and matrix profile to those of in vivo cells. The data suggested that there were at least two populations of mesenchymal cells responsible for ECM synthesis in the mucosa and that ligation of TGF-β receptors on these cells resulted in the disordered and increased ECM production observed in colitic mucosa.


Sign in / Sign up

Export Citation Format

Share Document