scholarly journals Evolution of simple multicellularity increases environmental complexity

2016 ◽  
Author(s):  
María Rebolleda-Gómez ◽  
William C. Ratcliff ◽  
Jonathon Fankhauser ◽  
Michael Travisano

AbstractMulticellularity—the integration of previously autonomous cells into a new, more complex organism—is one of the major transitions in evolution. Multicellularity changed evolutionary possibilities and facilitated the evolution of increased complexity. Transitions to multicellularity are associated with rapid diversification and increased ecological opportunity but the potential mechanisms are not well understood. In this paper we explore the ecological mechanisms of multicellular diversification during experimental evolution of the brewer’s yeast, Saccharomyces cerevisiae. The evolution from single cells into multicellular clusters modifies the structure of the environment, changing the fluid dynamics and creating novel ecological opportunities. This study demonstrates that even in simple conditions, incipient multicellularity readily changes the environment, facilitating the origin and maintenance of diversity.

eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
John H Koschwanez ◽  
Kevin R Foster ◽  
Andrew W Murray

We do not know how or why multicellularity evolved. We used the budding yeast, Saccharomyces cerevisiae, to ask whether nutrients that must be digested extracellularly select for the evolution of undifferentiated multicellularity. Because yeast use invertase to hydrolyze sucrose extracellularly and import the resulting monosaccharides, single cells cannot grow at low cell and sucrose concentrations. Three engineered strategies overcame this problem: forming multicellular clumps, importing sucrose before hydrolysis, and increasing invertase expression. We evolved populations in low sucrose to ask which strategy they would adopt. Of 12 successful clones, 11 formed multicellular clumps through incomplete cell separation, 10 increased invertase expression, none imported sucrose, and 11 increased hexose transporter expression, a strategy we had not engineered. Identifying causal mutations revealed genes and pathways, which frequently contributed to the evolved phenotype. Our study shows that combining rational design with experimental evolution can help evaluate hypotheses about evolutionary strategies.


Author(s):  
Samir Okasha

‘Levels of selection’ examines the levels-of-selection question, which asks whether natural selection acts on individuals, genes, or groups. This question is one of the most fundamental in evolutionary biology, and the subject of much controversy. Traditionally, biologists have mostly been concerned with selection and adaptation at the individual level. But, in theory, there are other possibilities, including selection on sub-individual units such as genes and cells, and on supra-individual units such as groups and colonies. Group selection, altruistic behaviour, kin selection, the gene-centric view of evolution, and the major transitions in evolution are all discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mark A. Phillips ◽  
Ian C. Kutch ◽  
Kaitlin M. McHugh ◽  
Savannah K. Taggard ◽  
Molly K. Burke

Abstract“Synthetic recombinant” populations have emerged as a useful tool for dissecting the genetics of complex traits. They can be used to derive inbred lines for fine QTL mapping, or the populations themselves can be sampled for experimental evolution. In the latter application, investigators generally value maximizing genetic variation in constructed populations. This is because in evolution experiments initiated from such populations, adaptation is primarily fueled by standing genetic variation. Despite this reality, little has been done to systematically evaluate how different methods of constructing synthetic populations shape initial patterns of variation. Here we seek to address this issue by comparing outcomes in synthetic recombinant Saccharomyces cerevisiae populations created using one of two strategies: pairwise crossing of isogenic strains or simple mixing of strains in equal proportion. We also explore the impact of the varying the number of parental strains. We find that more genetic variation is initially present and maintained when population construction includes a round of pairwise crossing. As perhaps expected, we also observe that increasing the number of parental strains typically increases genetic diversity. In summary, we suggest that when constructing populations for use in evolution experiments, simply mixing founder strains in equal proportion may limit the adaptive potential.


Sign in / Sign up

Export Citation Format

Share Document