scholarly journals The Anti-Epileptic Ketogenic Diet Alters Hippocampal Transporter Levels and Reduces Adiposity in Aged Rats

2017 ◽  
Author(s):  
Abbi R. Hernandez ◽  
Caesar M. Hernandez ◽  
Keila T. Campos ◽  
Leah M. Truckenbrod ◽  
Yasemin Sakarya ◽  
...  

AbstractNutritional ketosis is induced by high fat/low carbohydrate dietary regimens, which produce high levels of circulating ketone bodies, shifting metabolism away from glucose utilization. While ketogenic diets (KD) were initially introduced to suppress seizures, they are garnering attention for their potential to treat a myriad of neurodegenerative and metabolic disorders that are associated with advanced age. The feasibility and physiological impact of implementing a long-term KD in old animals, however, has not been systematically examined. In this study, young and aged rats consumed a calorically- and nutritionally-matched KD or control diet for 12 weeks. All KD-fed rats maintained higher levels of β-hydroxybutyrate (BHB) and lower levels of glucose relative to controls. However, it took the aged rats longer to reach asymptotic levels of BHB compared to young animals. Moreover, KD-fed rats had significantly less visceral white and brown adipose tissue than controls without a loss of lean mass. Interestingly, the KD lead to significant alterations in protein levels of hippocampal transporters for monocarboxylates, glucose and vesicular glutamate and GABA. Most notably, the age-related decline in vesicular glutamate transporter expression was reversed by the KD. These data demonstrate the feasibility and potential benefits of KDs for treating age-associated neural dysfunction.

1999 ◽  
Vol 277 (5) ◽  
pp. G929-G934 ◽  
Author(s):  
Zhi-Qiang Xiao ◽  
Yingjie Yu ◽  
Ahmed Khan ◽  
Richard Jaszewski ◽  
Murray N. Ehrinpreis ◽  
...  

Although in Fischer 344 rats aging is found to be associated with increased gastric mucosal proliferative activity, little is known about specific changes in the regulatory mechanisms of this process. To determine whether changes in cell cycling events could partly contribute to the age-related rise in gastric mucosal proliferative activity, the present investigation examines changes in cyclin-dependent kinase (Cdk2) activity and the regulation of this process in the gastric mucosa of Fischer 344 rats aged 4 (young), 13 (middle aged), and 24 (old) mo. We observed that aging is associated with a progressive rise in activity and protein levels of Cdk2 in the gastric mucosa. This is also found to be accompanied by a concomitant increase in cyclin E but not cyclin D1 levels. On the other hand, the levels of p21Waf1/Cip1 (total as well as the fraction associated with Cdk2), a nuclear protein that is known to inhibit different cyclin-Cdk complexes, are found to decline in the gastric mucosa with advancing age. In contrast, with aging, there was a steady rise in p53 levels in the gastric mucosa. We have also observed that the levels of phosphorylated retinoblastoma protein, a form that participates in regulating progression through the S phase, are markedly elevated in the gastric mucosa of aged rats. In conclusion, our data suggest that, in the gastric mucosa, aging enhances transition of G1 to S phase as well as progression through the S phase of the cell cycle. However, the age-related decline in p21Waf1/Cip1 in the gastric mucosa appears to be independent of p53 status.


Author(s):  
Jin-A Kim ◽  
Seong Min Kim ◽  
Sang Eun Ha ◽  
Preethi Vetrivel ◽  
Venu Venkatarame Gowda Saralamma ◽  
...  

Abstract Background Sarcopenia, the decline of skeletal muscle tissue attributed to primary aging is a major concern in older adults. Flavonoids might have potential benefits by modulating the regulation of satellite cells, thus preventing muscle loss. Sinensetin (SIN), a citrus methylated flavone with anti-inflammatory and anti-proliferative activity, can enhance lipolysis. The objective of the present study was to investigate whether SIN might have sarcopenia-suppressing effect on satellite cells from thigh and calf muscle tissues of young and old rats. Methods Primary muscle cells were obtained from thigh and calf tissues of young and old group rats by dissection. Obtained satellite cells were incubated with indicated concentrations of SIN (50 and 100 μM) treated and untreated condition in differentiation medium. Morphological changes of cells were examined using a phase-contrast microscope. Protein expression levels of myoD and myogenin were analyzed by Western blot. Cells treated with or without SIN under differentiation condition were also immunocytochemically stained for myogenin and 4′,6-diamidino-2-phenylindole (DAPI). Results Morphologically, the differentiation extracted satellite cells was found to be more evident in SIN treated group of aged rat′s cells than that in SIN untreated group. Expression levels of myoD and myogenin proteins involved in myogenesis were increased upon treatment with SIN. Conclusions Collectively, our results indicate that SIN can alleviate age-related sarcopenia by increasing differentiation rate and protein levels of myoD and myogenin.


2021 ◽  
pp. 1-11
Author(s):  
Lissette Duarte ◽  
Javier Quezada ◽  
Luisa A. Ramirez ◽  
Karla Vasquez ◽  
Juan F. Orellana ◽  
...  

BACKGROUND: Polyphenols intake increases the function of brown adipose tissue (BAT), stimulating energy expenditure (EE). Calafate (Berberis microphylla) is a polyphenol-rich Chilean native fruit. OBJECTIVE: To analyse the effect of a treatment with a Calafate extract in the thermogenic activity of mice adipose tissues. METHODS: Forty adult C57BL/6J male mice were subdivided into four groups (n=10 each): control diet, control+Calafate (extract: 50mg total polyphenols/kg weight), high-fat diet (HF) and HF+Calafate. RESULTS: Calafate prevented the increase in body weight and the decrease EE induced by HF. In BAT, Ucp-1 transcript was influenced by the interaction between diet and Calafate (p<0.01), Pparα showed the same expression pattern as Ucp-1 and both, diet (p<0.01) and Calafate (p<0.05), induced significant effects in Sirt1. In inguinal adipose tissue, Pgc1α, Pparα, Prdm16, Sirt1, and Dio2 transcripts presented a decreased expression caused by HF, that was reversed by Calafate. In BAT, an effect of diet (p<0.05) and an interaction between diet and Calafate (p<0.01) was observed in UCP-1 protein levels. CONCLUSIONS: A treatment with Calafate drives less weight gain in mice fed with HF, and reverses the effects generated by it on the expression of thermogenic and browning markers.


2019 ◽  
Vol 41 (1-2) ◽  
pp. 56-66 ◽  
Author(s):  
Daria S. Kalinina ◽  
Dmitrii S. Vasilev ◽  
Anna B. Volnova ◽  
Natalia N. Nalivaeva ◽  
Igor A. Zhuravin

Using electrocorticogram (ECoG) analysis, we compared age-related dynamics of general neuronal activity and convulsive epileptiform responsiveness induced by intracortical microinjections of 4-aminopyridine (4-AP) in control Wistar rats and those subjected to prenatal hypoxia (Hx; E14; 7% O2, 3 h). The studies were carried out in three age periods roughly corresponding to childhood (P20–27), adolescence (P30–45), and adulthood (P90–120). It was found that in the process of postnatal development of the control rats, the peak of the ECoG power spectrum density (PSD) of the theta rhythm during wakefulness shifted from the low to the higher frequency, while in the Hx rats this shift had the opposite direction. Moreover, the Hx rats had different frequency characteristics of the ECoG PSD and longer episodes of spike-and-wave discharges caused by 4-AP injections compared to the controls. The total ECoG PSD of slow-wave sleep (1–5 Hz) was also dramatically decreased in the process of development of the Hx rats. Such alterations in PSD could be explained by the changes in balance of the excitation and inhibition processes in the cortical networks. Analyzing protein levels of neurotransmitter transporters in the brain structures of the Hx rats, we found that the content of the glutamate transporter EAAT1 was higher in the parietal cortex in all age groups of Hx rats while in the hippocampus it decreased during postnatal development compared to controls. Furthermore, the content of the vesicular acetylcholine transporter in the parietal cortex, and of the inhibitory GABA transporter 1 in the hippocampus, was also affected by prenatal Hx. These data suggest that prenatal Hx results in a shift in the excitatory and inhibitory balance in the rat cortex towards excitation, making the rat’s brain more vulnerable to the effects of proconvulsant drugs and predisposing animals to epileptogenesis during postnatal life.


2022 ◽  
Vol 8 ◽  
Author(s):  
Matthieu Lilamand ◽  
François Mouton-Liger ◽  
Emmanuelle Di Valentin ◽  
Marta Sànchez Ortiz ◽  
Claire Paquet

Alzheimer's disease (AD) is the most frequent age-related neurodegenerative disorder, with no curative treatment available so far. Alongside the brain deposition of β-amyloid peptide and hyperphosphorylated tau, neuroinflammation triggered by the innate immune response in the central nervous system, plays a central role in the pathogenesis of AD. Glucose usually represents the main fuel for the brain. Glucose metabolism has been related to neuroinflammation, but also with AD lesions. Hyperglycemia promotes oxidative stress and neurodegeneration. Insulinoresistance (e.g., in type 2 diabetes) or low IGF-1 levels are associated with increased β-amyloid production. However, in the absence of glucose, the brain may use another fuel: ketone bodies (KB) produced by oxidation of fatty acids. Over the last decade, ketogenic interventions i.e., ketogenic diets (KD) with very low carbohydrate intake or ketogenic supplementation (KS) based on medium-chain triglycerides (MCT) consumption, have been studied in AD animal models, as well as in AD patients. These interventional studies reported interesting clinical improvements in animals and decrease in neuroinflammation, β-amyloid and tau accumulation. In clinical studies, KS and KD were associated with better cognition, but also improved brain metabolism and AD biomarkers. This review summarizes the available evidence regarding KS/KD as therapeutic options for individuals with AD. We also discuss the current issues and potential adverse effects associated with these nutritional interventions. Finally, we propose an overview of ongoing and future registered trials in this promising field.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Nara R. C. Oliveira ◽  
Scherolin O. Marques ◽  
Thais F. Luciano ◽  
José R. Pauli ◽  
Leandro P. Moura ◽  
...  

The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF-α, IL-1β, and NF-κB) and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1α, and AMPK phosphorylation) in quadriceps of rats. Male Wistar rats at 3 (young) and 18 months (middle-aged rats) of age were divided into nonexercised (NE) and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a) running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b) these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c) running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d) these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ayinuer Tuerdi ◽  
Shu Kikuta ◽  
Makoto Kinoshita ◽  
Teru Kamogashira ◽  
Kenji Kondo ◽  
...  

AbstractOxidative stress causes tissue damage, affecting age-related pathologies. Protein restriction (PR) provides a powerful intervention strategy for reducing oxidative stress, which may have a positive effect on individual organs. However, it is unknown whether PR intervention influences the olfactory system. Here, we investigated how 10 months of PR could affect the cell dynamics of the olfactory epithelium (OE) in mice. We found that PR reduced age-related loss of outer hair cells in the cochlea, providing preventive effects against age-related hearing loss. In contrast, PR resulted in reduced mature olfactory sensory neurons (OSNs), increased proliferative basal cells, and increased apoptotic OSNs in zone 1 (the only area containing neurons expressing NQO1 [quinone dehydrogenase 1]) of the OE in comparison with animals given a control diet. Substantial oxidative stress occurred in NQO1-positive cells and induced apoptotic OSNs in zone 1. These results indicate that in contrast to the positive effect on the auditory system, PR induces oxidative stress and structurally and functionally negative effects on OSNs in zone 1, which is probably involved in the bioactivation of NQO1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Morten Lundh ◽  
Ali Altıntaş ◽  
Marco Tozzi ◽  
Odile Fabre ◽  
Tao Ma ◽  
...  

AbstractThe profound energy-expending nature of brown adipose tissue (BAT) thermogenesis makes it an attractive target tissue to combat obesity-associated metabolic disorders. While cold exposure is the strongest inducer of BAT activity, the temporal mechanisms tuning BAT adaptation during this activation process are incompletely understood. Here we show that the scaffold protein Afadin is dynamically regulated by cold in BAT, and participates in cold acclimation. Cold exposure acutely increases Afadin protein levels and its phosphorylation in BAT. Knockdown of Afadin in brown pre-adipocytes does not alter adipogenesis but restricts β3-adrenegic induction of thermogenic genes expression and HSL phosphorylation in mature brown adipocytes. Consistent with a defect in thermogenesis, an impaired cold tolerance was observed in fat-specific Afadin knockout mice. However, while Afadin depletion led to reduced Ucp1 mRNA induction by cold, stimulation of Ucp1 protein was conserved. Transcriptomic analysis revealed that fat-specific ablation of Afadin led to decreased functional enrichment of gene sets controlling essential metabolic functions at thermoneutrality in BAT, whereas it led to an altered reprogramming in response to cold, with enhanced enrichment of different pathways related to metabolism and remodeling. Collectively, we demonstrate a role for Afadin in supporting the adrenergic response in brown adipocytes and BAT function.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2307
Author(s):  
Cherubino Di Lorenzo ◽  
Giovanna Ballerini ◽  
Piero Barbanti ◽  
Andrea Bernardini ◽  
Giacomo D’Arrigo ◽  
...  

Headaches are among the most prevalent and disabling neurologic disorders and there are several unmet needs as current pharmacological options are inadequate in treating patients with chronic headache, and a growing interest focuses on nutritional approaches as non-pharmacological treatments. Among these, the largest body of evidence supports the use of the ketogenic diet (KD). Exactly 100 years ago, KD was first used to treat drug-resistant epilepsy, but subsequent applications of this diet also involved other neurological disorders. Evidence of KD effectiveness in migraine emerged in 1928, but in the last several year’s different groups of researchers and clinicians began utilizing this therapeutic option to treat patients with drug-resistant migraine, cluster headache, and/or headache comorbid with metabolic syndrome. Here we describe the existing evidence supporting the potential benefits of KDs in the management of headaches, explore the potential mechanisms of action involved in the efficacy in-depth, and synthesize results of working meetings of an Italian panel of experts on this topic. The aim of the working group was to create a clinical recommendation on indications and optimal clinical practice to treat patients with headaches using KDs. The results we present here are designed to advance the knowledge and application of KDs in the treatment of headaches.


Sign in / Sign up

Export Citation Format

Share Document