scholarly journals Intergenic RNA mainly derives from nascent transcripts of known genes

2020 ◽  
Author(s):  
Agostini Federico ◽  
Zagalak Julian ◽  
Attig Jan ◽  
Ule Jernej ◽  
Nicholas M. Luscombe

AbstractBackgroundEukaryotic genomes undergo pervasive transcription, leading to the production of many types of stable and unstable RNAs. Transcription is not restricted to regions with annotated gene features but includes almost any genomic context. Currently, the source and function of most RNAs originating from intergenic regions in the human genome remains unclear.ResultsWe hypothesised that many intergenic RNA can be ascribed to the presence of as-yet unannotated genes or the ‘fuzzy’ transcription of known genes that extends beyond the annotated boundaries. To elucidate the contributions of these two sources, we assembled a dataset of >2.5 billion publicly available RNA-seq reads across 5 human cell lines and multiple cellular compartments to annotate transcriptional units in the human genome. About 80% of transcripts from unannotated intergenic regions can be attributed to the fuzzy transcription of existing genes; the remaining transcripts originate mainly from putative long non-coding RNA loci that are rarely spliced. We validated the transcriptional activity of these intergenic RNA using independent measurements, including transcriptional start sites, chromatin signatures, and genomic occupancies of RNA polymerase II in various phosphorylation states. We also analysed the nuclear localisation and sensitivities of intergenic transcripts to nucleases to illustrate that they tend to be rapidly degraded either ‘on-chromatin’ by XRN2 or ‘off-chromatin’ by the exosome.ConclusionsWe provide a curated atlas of intergenic RNAs that distinguishes between alternative processing of well annotated genes from independent transcriptional units based on the combined analysis of chromatin signatures, nuclear RNA localisation and degradation pathways.

2007 ◽  
Vol 178 (6) ◽  
pp. 937-949 ◽  
Author(s):  
Snehal Bhikhu Patel ◽  
Natalya Novikova ◽  
Michel Bellini

In amphibian oocytes, most lateral loops of the lampbrush chromosomes correspond to active transcriptional sites for RNA polymerase II. We show that newly assembled small nuclear ribonucleoprotein (RNP [snRNP]) particles, which are formed upon cytoplasmic injection of fluorescently labeled spliceosomal small nuclear RNAs (snRNAs), target the nascent transcripts of the chromosomal loops. With this new targeting assay, we demonstrate that nonfunctional forms of U1 and U2 snRNAs still associate with the active transcriptional units. In particular, we find that their association with nascent RNP fibrils is independent of their base pairing with pre–messenger RNAs. Additionally, stem loop I of the U1 snRNA is identified as a discrete domain that is both necessary and sufficient for association with nascent transcripts. Finally, in oocytes deficient in splicing, the recruitment of U1, U4, and U5 snRNPs to transcriptional units is not affected. Collectively, these data indicate that the recruitment of snRNPs to nascent transcripts and the assembly of the spliceosome are uncoupled events.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xuhong Yu ◽  
Pascal G. P. Martin ◽  
Scott D. Michaels

Abstract Ensuring that one gene’s transcription does not inappropriately affect the expression of its neighbors is a fundamental challenge to gene regulation in a genomic context. In plants, which lack homologs of animal insulator proteins, the mechanisms that prevent transcriptional interference are not well understood. Here we show that BORDER proteins are enriched in intergenic regions and prevent interference between closely spaced genes on the same strand by promoting the 3′ pausing of RNA polymerase II at the upstream gene. In the absence of BORDER proteins, 3′ pausing associated with the upstream gene is reduced and shifts into the promoter region of the downstream gene. This is consistent with a model in which BORDER proteins inhibit transcriptional interference by preventing RNA polymerase from intruding into the promoters of downstream genes.


2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Victoria Mamontova ◽  
Barbara Trifault ◽  
Lea Boten ◽  
Kaspar Burger

Gene expression is an essential process for cellular growth, proliferation, and differentiation. The transcription of protein-coding genes and non-coding loci depends on RNA polymerases. Interestingly, numerous loci encode long non-coding (lnc)RNA transcripts that are transcribed by RNA polymerase II (RNAPII) and fine-tune the RNA metabolism. The nucleolus is a prime example of how different lncRNA species concomitantly regulate gene expression by facilitating the production and processing of ribosomal (r)RNA for ribosome biogenesis. Here, we summarise the current findings on how RNAPII influences nucleolar structure and function. We describe how RNAPII-dependent lncRNA can both promote nucleolar integrity and inhibit ribosomal (r)RNA synthesis by modulating the availability of rRNA synthesis factors in trans. Surprisingly, some lncRNA transcripts can directly originate from nucleolar loci and function in cis. The nucleolar intergenic spacer (IGS), for example, encodes nucleolar transcripts that counteract spurious rRNA synthesis in unperturbed cells. In response to DNA damage, RNAPII-dependent lncRNA originates directly at broken ribosomal (r)DNA loci and is processed into small ncRNA, possibly to modulate DNA repair. Thus, lncRNA-mediated regulation of nucleolar biology occurs by several modes of action and is more direct than anticipated, pointing to an intimate crosstalk of RNA metabolic events.


2000 ◽  
Vol 20 (21) ◽  
pp. 7893-7902 ◽  
Author(s):  
Matthew E. Portnoy ◽  
Xiu Fen Liu ◽  
Valeria Cizewski Culotta

ABSTRACT The baker's yeast Saccharomyces cerevisiae expresses three homologues of the Nramp family of metal transporters: Smf1p, Smf2p, and Smf3p, encoded by SMF1, SMF2, andSMF3, respectively. Here we report a comparative analysis of the yeast Smf proteins at the levels of localization, regulation, and function of the corresponding metal transporters. Smf1p and Smf2p function in cellular accumulation of manganese, and the two proteins are coregulated by manganese ions and the BSD2 gene product. Under manganese-replete conditions, Bsd2p facilitates trafficking of Smf1p and Smf2p to the vacuole, where these transport proteins are degraded. However, Smf1p and Smf2p localize to distinct cellular compartments under metal starvation: Smf1p accumulates at the cell surface, while Smf2p is restricted to intracellular vesicles. The third Nramp homologue, Smf3p, is quite distinctive. Smf3p is not regulated by Bsd2p or by manganese ions and is not degraded in the vacuole. Instead, Smf3p is down-regulated by iron through a mechanism that does not involve transcription or protein stability. Smf3p localizes to the vacuolar membrane independently of metal treatment, and yeast cells lacking Smf3p show symptoms of iron starvation. We propose that Smf3p helps to mobilize vacuolar stores of iron.


2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Charles T. Lauhon

ABSTRACT In bacteria, tRNAs that decode 4-fold degenerate family codons and have uridine at position 34 of the anticodon are typically modified with either 5-methoxyuridine (mo5U) or 5-methoxycarbonylmethoxyuridine (mcmo5U). These modifications are critical for extended recognition of some codons at the wobble position. Whereas the alkylation steps of these modifications have been described, genes required for the hydroxylation of U34 to give 5-hydroxyuridine (ho5U) remain unknown. Here, a number of genes in Escherichia coli and Bacillus subtilis are identified that are required for wild-type (wt) levels of ho5U. The yrrMNO operon is identified in B. subtilis as important for the biosynthesis of ho5U. Both yrrN and yrrO are homologs to peptidase U32 family genes, which includes the rlhA gene required for ho5C synthesis in E. coli. Deletion of either yrrN or yrrO, or both, gives a 50% reduction in mo5U tRNA levels. In E. coli, yegQ was found to be the only one of four peptidase U32 genes involved in ho5U synthesis. Interestingly, this mutant shows the same 50% reduction in (m)cmo5U as that observed for mo5U in the B. subtilis mutants. By analyzing the genomic context of yegQ homologs, the ferredoxin YfhL is shown to be required for ho5U synthesis in E. coli to the same extent as yegQ. Additional genes required for Fe-S biosynthesis and biosynthesis of prephenate give the same 50% reduction in modification. Together, these data suggest that ho5U biosynthesis in bacteria is similar to that of ho5C, but additional genes and substrates are required for complete modification. IMPORTANCE Modified nucleotides in tRNA serve to optimize both its structure and function for accurate translation of the genetic code. The biosynthesis of these modifications has been fertile ground for uncovering unique biochemistry and metabolism in cells. In this work, genes that are required for a novel anaerobic hydroxylation of uridine at the wobble position of some tRNAs are identified in both Bacillus subtilis and Escherichia coli. These genes code for Fe-S cluster proteins, and their deletion reduces the levels of the hydroxyuridine by 50% in both organisms. Additional genes required for Fe-S cluster and prephenate biosynthesis and a previously described ferredoxin gene all display a similar reduction in hydroxyuridine levels, suggesting that still other genes are required for the modification.


2020 ◽  
Author(s):  
Jayant Maini ◽  
Ankit Kumar Pathak ◽  
Kausik Bhattacharyya ◽  
Narendra Kumar ◽  
Ankita Narang ◽  
...  

AbstractHuman PRE-PIK3C2B is a dual nature polycomb response element that interacts with both polycomb as well as trithorax members. In the current study, using 4C-Seq (Capturing Circular Chromosomal Conformation-Sequencing), we identified long-range chromatin interactions associated with PRE-PIK3C2B and validated them with 3C-PCR. We identified both intra-as well as inter-chromosomal interactions, a large proportion of which were found to be closely distributed around transcriptional start sites (TSS). A significant number of interactions were also found to be associated with heterochromatic regions. Meta-analysis of ENCODE ChIP-Seq data identified an overall enrichment of YY1, CTCF as well as histone modification such as H3K4me3 and H3K27me marks in different cell lines. Almost 90% interactions were derived from either intronic or intergenic regions. among which large proportions of intronic interactors were either unique sequences or LINE/SINE derived. In case of intergenic interactions, majority of the interaction were associated with LINE/SINE repeats. We further found that genes proximal to the interactor sequences were co-expressed, they showed reduced expression. To the best of our knowledge this is one of the early demonstrations of long-range interaction of PRE sequences in human genome.


2021 ◽  
Author(s):  
Nina Kirstein ◽  
Sadat Dokaneheifard ◽  
Pradeep Reddy Cingaram ◽  
Monica Guiselle Valencia ◽  
Felipe Beckedorff ◽  
...  

MicroRNA (miRNA) homeostasis is crucial for the post-transcriptional regulation of their target genes and miRNA dysregulation has been linked to multiple diseases, including cancer. The molecular mechanisms underlying miRNA biogenesis from processing of primary miRNA transcripts to formation of mature miRNA duplex are well understood. Loading of miRNA duplex into members of the Argonaute (Ago) protein family, representing the core of the RNA-induced silencing complex (RISC), is pivotal to miRNA-mediated gene silencing. The Integrator complex has been previously shown to be an important regulator of RNA maturation, RNA polymerase II pause-release, and premature transcriptional termination. Here, we report that loss of Integrator results in global diminution of mature miRNAs. By incorporating 4-Thiouridine (s4U) in nascent transcripts, we traced miRNA fate from biogenesis to stabilization and identified Integrator to be essential for proper miRNA assembly into RISC. Enhanced UV crosslinking and immunoprecipitation (eCLIP) of Integrator confirms a robust association with mature miRNAs. Indeed, Integrator potentiates Ago2-mediated cleavage of target RNAs. These findings highlight an essential role for Integrator in miRNA abundance and RISC function.


Sign in / Sign up

Export Citation Format

Share Document