scholarly journals New virus isolates from Italian hydrothermal environments underscore the biogeographic pattern in archaeal virus communities

Author(s):  
Diana P. Baquero ◽  
Patrizia Contursi ◽  
Monica Piochi ◽  
Simonetta Bartolucci ◽  
Ying Liu ◽  
...  

ABSTRACTViruses of hyperthermophilic archaea represent one of the least understood parts of the virosphere, showing little genomic and morphological similarity to viruses of bacteria or eukaryotes. Here, we investigated virus diversity in the active sulfurous fields of the Campi Flegrei volcano in Pozzuoli, Italy. Virus-like particles displaying eight different morphotypes, including lemon-shaped, droplet-shaped and bottle-shaped virions, were observed and five new archaeal viruses proposed to belong to families Rudiviridae, Globuloviridae and Tristromaviridae were isolated and characterized. Two of these viruses infect neutrophilic hyperthermophiles of the genus Pyrobaculum, whereas the remaining three have rod-shaped virions typical of the family Rudiviridae and infect acidophilic hyperthermophiles belonging to three different genera of the order Sulfolobales, namely, Saccharolobus, Acidianus and Metallosphaera. Notably, Metallosphaera rod-shaped virus 1 is the first rudivirus isolated on Metallosphaera species. Phylogenomic analysis of the newly isolated and previously sequenced rudiviruses revealed a clear biogeographic pattern, with all Italian rudiviruses forming a monophyletic clade, suggesting geographical structuring of virus communities in extreme geothermal environments. Furthermore, we propose a revised classification of the Rudiviridae family, with establishment of five new genera. Collectively, our results further show that high-temperature continental hydrothermal systems harbor a highly diverse virome and shed light on the evolution of archaeal viruses.

2020 ◽  
Vol 14 (7) ◽  
pp. 1821-1833 ◽  
Author(s):  
Diana P. Baquero ◽  
Patrizia Contursi ◽  
Monica Piochi ◽  
Simonetta Bartolucci ◽  
Ying Liu ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 26 ◽  
Author(s):  
Samuel Olatunde Popoola ◽  
Xiqiu Han ◽  
Yejian Wang ◽  
Zhongyan Qiu ◽  
Ying Ye ◽  
...  

In this paper, we conduct a comparative study on the mineralogy and geochemistry of metalliferous sediment collected near the active hydrothermal site (Wocan-1) and inactive hydrothermal site (Wocan-2) from Wocan Hydrothermal Field, on the Carlsberg Ridge (CR), northwest Indian Ocean. We aim to understand the spatial variations in the primary and post-depositional conditions and the intensity of hydrothermal circulations in the Wocan hydrothermal systems. Sediment samples were collected from six stations which includes TVG-07, TVG-08 (Wocan-1), TVG-05, TVG-10 (Wocan-2), TVG-12 and TVG-13 (ridge flanks). The mineralogical investigations show that sediment samples from Wocan-1 and Wocan-2 are composed of chalcopyrite, pyrite, sphalerite, barite, gypsum, amorphous silica, altered volcanic glass, Fe-oxides, and hydroxides. The ridge flank sediments are dominated by biogenic calcite and foraminifera assemblages. The bulk sediment samples of Wocan-1 have an elevated Fe/Mn ratio (up to ~1545), with lower U contents (<7.4 ppm) and U/Fe ratio (<~1.8 × 10−5). The sulfide separates (chalcopyrite, pyrite, and sphalerite) are enriched in Se, Co, As, Sb, and Pb. The calculated sphalerite precipitation temperature (Sph.PT) yields ~278 °C. The sulfur isotope (δ34S) analysis returned a light value of 3.0–3.6‰. The bulk sediment samples of Wocan-2 have a lower Fe/Mn ratio (<~523), with high U contents (up to 19.6 ppm) and U/Fe ratio (up to ~6.2 × 10−5). The sulfide separates are enriched in Zn, Cu, Tl, and Sn. The calculated Sph.PT is ~233 °C. The δ34S returned significant values of 4.1–4.3‰ and 6.4–8.7‰ in stations TVG-10 and TVG-05, respectively. The geochemical signatures (e.g., Fe/Mn and U/Fe ratio, mineral chemistry of sulfides separates, and S-isotopes and Sph.PT) suggest that sediment samples from Wocan-1 are located near intermediate–high temperature hydrothermal discharge environments. Additionally, relatively low δ34S values exhibit a lower proportion (less than 20%) of seawater-derived components. The geochemical signatures suggest that sediment samples from Wocan-2 has undergone moderate–extensive oxidation and secondary alterations by seawater in a low–intermediate temperature hydrothermal environments. Additionally, the significant δ34S values of station TVG-05 exhibit a higher estimated proportion (up to 41%) of seawater-derived components. Our results showed pervasive hydrothermal contributions into station TVG-08 relative to TVG-07, it further showed the increased process of seafloor weathering at TVG-05 relative to TVG-10.


2019 ◽  
Vol 16 (8) ◽  
pp. 1817-1828 ◽  
Author(s):  
Sergey A. Marakushev ◽  
Ol'ga V. Belonogova

Abstract. The origin and development of the primary autotrophic metabolism on early Earth were influenced by the two main regimes of degassing of the Earth – reducing (predominance CH4) and oxidative (CO2). Among the existing theories of the autotrophic origin of life in hydrothermal environments, CO2 is usually considered to be the carbon source for nascent autotrophic metabolism. However, the ancestral carbon used in metabolism may have been derived from CH4 if the outflow of magma fluid to the surface of the Earth consisted mainly of methane. In such an environment, the primary autotrophic metabolic systems had to be methanotrophic. Due to the absence of molecular oxygen in the Archean conditions, this metabolism would have been anaerobic; i.e., oxidation of methane must be realized by inorganic high-potential electron acceptors. In light of the primacy and prevalence of CH4-dependent metabolism in hydrothermal systems of the ancient Earth, we propose a model of carbon fixation where the methane is fixed or transformed in a sequence of reactions in an autocatalytic methane–fumarate cycle. Nitrogen oxides are thermodynamically the most favorable among possible oxidants of methane; however, even the activity of oxygen created by mineral buffers of iron in hydrothermal conditions is sufficient for methanotrophic acetogenesis. The hydrothermal system model is considered in the form of a phase diagram, which demonstrates the area of redox and P and T conditions favorable for the development of the primary methanotrophic metabolism.


Author(s):  
Srishti Kashyap ◽  
James F. Holden

Dissimilatory iron reduction by hyperthermophilic archaea occurs in many geothermal environments and generally relies on microbe-mineral interactions that transform various iron oxide minerals. In this study, the physiology of dissimilatory iron and nitrate reduction was examined in the hyperthermophilic crenarchaeon Pyrodictium delaneyi Su06T. Iron barrier experiments showed that P. delaneyi required direct contact with the Fe(III) oxide mineral ferrihydrite for reduction. The separate addition of an exogenous electron shuttle (anthraquinone-2,6-disulfonate), a metal chelator (nitrilotriacetic acid), and 75% spent cell-free supernatant did not stimulate growth with or without the barrier. Protein electrophoresis showed that the c-type cytochrome and general protein compositions of P. delaneyi changed when grown on ferrihydrite relative to nitrate. Differential proteomic analyses using tandem mass tagged protein fragments and mass spectrometry detected 660 proteins and differential production of 127 proteins. Among these, two putative membrane-bound molybdopterin-dependent oxidoreductase complexes increased in relative abundance 60- to 3,000-fold and 50-100-fold in cells grown on iron oxide. A putative 8-heme c-type cytochrome was 60-fold more abundant in iron grown cells and was unique to the Pyrodictiaceae. There was also a >14,700-fold increase in a membrane transport protein in iron grown cells. There were no changes in the abundances of flagellin proteins nor a putative nitrate reductase, but a membrane nitric oxide reductase was more abundant on nitrate. These data help to elucidate the mechanisms by which hyperthermophilic crenarchaea generate energy and transfer electrons across the membrane to iron oxide minerals. IMPORTANCE Understanding iron reduction in the hyperthermophilic crenarchaeon Pyrodictium delaneyi provides insight into the diversity of mechanisms used for this process and its potential impact in geothermal environments. The ability of P. delaneyi to reduce Fe(III) oxide minerals through direct contact potentially using a novel cytochrome respiratory complex and a membrane-bound molybdopterin respiratory complex sets iron reduction in this organism apart from previously described iron reduction processes. A model is presented where obligatory H2 oxidation on the membrane coupled with electron transport and either Fe(III) oxide or nitrate reduction leads to the generation of a proton motive force and energy generation by oxidative phosphorylation. However, P. delaneyi cannot fix CO2 and relies on organic compounds from its environment for biosynthesis.


2020 ◽  
Author(s):  
Anselm Loges ◽  
Marion Louvel ◽  
Max Wilke ◽  
Sthephan Klemme ◽  
Timm John ◽  
...  

&lt;p&gt;High field strength elements (HFSE) such as Zr and Hf are relatively insoluble in most natural hydrothermal solutions and consequently immobile in most geological systems. However, fluoride forms stable aqueous complexes with many HFSE ions, including Zr&lt;sup&gt;4+&lt;/sup&gt; and Hf&lt;sup&gt;4+&lt;/sup&gt;, and is thus a potent mobilizer of these elements. Due to their identical charge and similar ionic radius (590 pm and 580 pm, respectively), Zr and Hf behave almost identically in geological system and are therefore referred to as geochemical twins. Fluoride complexation in hydrothermal environments is one of few processes in the Earth's crust that can effectively fractionate them from one another. This fact can be used to trace past fluoride activity in fossil hydrothermal systems by investigating Zr/Hf ratios, if fluoride complexation of Zr and Hf is sufficiently well understood. Mobility of metals as complexes is controlled by two distinct but related mechanisms: Formation of the complex itself and solvation of that complex in the solvent. Poly(hydrogen-fluoride) bridging of fluoride complexes to the surrounding aqueous solvent is crucial to the understanding of the solvation and therefore the mobility of fluoride complexes.&lt;/p&gt;&lt;p&gt;We report geometries of Zr and Hf fluoride complexes up to 400&amp;#176;C, determined by extended X-Ray absorption fine structure (EXAFS) in a hydrothermal autoclave. Existing data sets on the stability of those complexes at lower temperatures are extended to 400&amp;#176;C. Our data show strong temperature dependence of the complex stability for both metals. However, the effect of temperature is not equally strong for Zr and Hf. Fractionation of the twin pair is thus a function of temperature as well as fluoride activity.&lt;/p&gt;


Author(s):  
Rebecca C Mueller ◽  
Jesse T Peach ◽  
Dana J Skorupa ◽  
Valerie Copié ◽  
Brian Bothner ◽  
...  

Abstract The described diversity within the domain Archaea has recently expanded due to advances in sequencing technologies, but many habitats that likely harbor novel lineages of archaea remain understudied. Knowledge of archaea within natural and engineered hydrothermal systems, such as hot springs and engineered subsurface habitats, has been steadily increasing, but the majority of the work has focused on archaea living in acidic or circumneutral environments. The environmental pressures exerted by the combination of high temperatures and high pH likely select for divergent communities and distinct metabolic pathways from those observed in acidic or circumneutral systems. In this review, we examine what is currently known about the archaea found in thermoalkaline environments, focusing on the detection of novel lineages and knowledge of the ecology, metabolic pathways and functions of these populations and communities. We also discuss the potential of emerging multi–omics approaches, including proteomics and metabolomics, to enhance our understanding of archaea within extreme thermoalkaline systems.


Geophysics ◽  
2008 ◽  
Vol 73 (6) ◽  
pp. WA3-WA18 ◽  
Author(s):  
Maurizio Battaglia ◽  
Joachim Gottsmann ◽  
Daniele Carbone ◽  
José Fernández

Time-dependent gravimetric measurements can detect subsurface processes long before magma flow leads to earthquakes or other eruption precursors. The ability of gravity measurements to detect subsurface mass flow is greatly enhanced if gravity measurements are analyzed and modeled with ground-deformation data. Obtaining the maximum information from microgravity studies requires careful evaluation of the layout of network benchmarks, the gravity environmental signal, and the coupling between gravity changes and crustal deformation. When changes in the system under study are fast (hours to weeks), as in hydrothermal systems and restless volcanoes, continuous gravity observations at selected sites can help to capture many details of the dynamics of the intrusive sources. Despite the instrumental effects, mainly caused by atmospheric temperature, results from monitoring at Mt. Etna volcano show that continuous measurements are a powerful tool for monitoring and studying volcanoes.Several analytical and numerical mathematical models can beused to fit gravity and deformation data. Analytical models offer a closed-form description of the volcanic source. In principle, this allows one to readily infer the relative importance of the source parameters. In active volcanic sites such as Long Valley caldera (California, U.S.A.) and Campi Flegrei (Italy), careful use of analytical models and high-quality data sets has produced good results. However, the simplifications that make analytical models tractable might result in misleading volcanological inter-pretations, particularly when the real crust surrounding the source is far from the homogeneous/isotropic assumption. Using numerical models allows consideration of more realistic descriptions of the sources and of the crust where they are located (e.g., vertical and lateral mechanical discontinuities, complex source geometries, and topography). Applications at Teide volcano (Tenerife) and Campi Flegrei demonstrate the importance of this more realistic description in gravity calculations.


Author(s):  
J. A. Breier ◽  
S. N. White ◽  
C. R. German

In deep-sea hydrothermal environments, steep chemical and thermal gradients, rapid and turbulent mixing and biologic processes produce a multitude of diverse mineral phases and foster the growth of a variety of chemosynthetic micro-organisms. Many of these microbial species are associated with specific mineral phases, and the interaction of mineral and microbial processes are of only recently recognized importance in several areas of hydrothermal research. Many submarine hydrothermal mineral phases form during kinetically limited reactions and are either metastable or are only thermodynamically stable under in situ conditions. Laser Raman spectroscopy is well suited to mineral speciation measurements in the deep sea in many ways, and sea-going Raman systems have been built and used to make a variety of in situ measurements. However, the full potential of this technique for hydrothermal science has yet to be realized. In this focused review, we summarize both the need for in situ mineral speciation measurements in hydrothermal research and the development of sea-going Raman systems to date; we describe the rationale for further development of a small, low-cost sea-going Raman system optimized for mineral identification that incorporates a fluorescence-minimizing design; and we present three experimental applications that such a tool would enable.


2004 ◽  
Vol 70 (4) ◽  
pp. 2404-2413 ◽  
Author(s):  
Ken Takai ◽  
Hanako Oida ◽  
Yohey Suzuki ◽  
Hisako Hirayama ◽  
Satoshi Nakagawa ◽  
...  

ABSTRACT Distribution profiles of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems were mapped with culture-independent molecular techniques. Planktonic samples were obtained from the waters surrounding two geographically and geologically distinct hydrothermal systems, and the abundance of marine crenarchaeota group I was examined by 16S ribosomal DNA clone analysis, quantitative PCR, and whole-cell fluorescence in situ hybridization. A much higher proportion of marine crenarchaeota group I within the microbial community was detected in deep-sea hydrothermal environments than in normal deep and surface seawaters. The highest proportion was always obtained from the ambient seawater adjacent to hydrothermal emissions and chimneys but not from the hydrothermal plumes. These profiles were markedly different from the profiles of epsilon-Proteobacteria, which are abundant in the low temperatures of deep-sea hydrothermal environments.


Sign in / Sign up

Export Citation Format

Share Document