scholarly journals Acetylation of cytidine residues boosts HIV-1 gene expression by increasing viral RNA stability

2020 ◽  
Author(s):  
Kevin Tsai ◽  
Ananda Ayyappan Jaguva Vasudevan ◽  
Cecilia Martinez Campos ◽  
Ann Emery ◽  
Ronald Swanstrom ◽  
...  

AbstractCovalent modifications added to individual nucleotides on mRNAs, called epitranscriptomic modifications, have recently emerged as key regulators of both cellular and viral mRNA function1,2 and RNA methylation has now been shown to enhance the replication of human immunodeficiency virus 1 (HIV-1) and several other viruses3–11. Recently, acetylation of the N4 position of cytidine (ac4C) was reported to boost cellular mRNA function by increasing mRNA translation and stability12. We therefore hypothesized that ac4C and N-acetyltransferase 10 (NAT10), the cellular enzyme that adds ac4C to RNAs, might also have been subverted by HIV-1 to increase viral gene expression. We now confirm that HIV-1 transcripts are indeed modified by addition of ac4C at multiple discreet sites and demonstrate that silent mutagenesis of a subset of these ac4C addition sites inhibits HIV-1 gene expression in cis. Moreover, reduced expression of NAT10, and the concomitant decrease in the level of ac4C on viral RNAs, inhibits HIV-1 replication by reducing HIV-1 RNA stability. Interestingly Remodelin, a previously reported inhibitor of NAT10 function13,14, also inhibits HIV-1 replication without affecting cell viability, thus raising the possibility that the addition of ac4C to viral mRNAs might emerge as a novel cellular target for antiviral drug development.

2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Sebla B. Kutluay ◽  
Ann Emery ◽  
Srinivasa R. Penumutchu ◽  
Dana Townsend ◽  
Kasyap Tenneti ◽  
...  

ABSTRACT Alternative splicing of HIV-1 mRNAs increases viral coding potential and controls the levels and timing of gene expression. HIV-1 splicing is regulated in part by heterogeneous nuclear ribonucleoproteins (hnRNPs) and their viral target sequences, which typically repress splicing when studied outside their native viral context. Here, we determined the location and extent of hnRNP binding to HIV-1 mRNAs and their impact on splicing in a native viral context. Notably, hnRNP A1, hnRNP A2, and hnRNP B1 bound to many dispersed sites across viral mRNAs. Conversely, hnRNP H1 bound to a few discrete purine-rich sequences, a finding that was mirrored in vitro. hnRNP H1 depletion and mutation of a prominent viral RNA hnRNP H1 binding site decreased the use of splice acceptor A1, causing a deficit in Vif expression and replicative fitness. This quantitative framework for determining the regulatory inputs governing alternative HIV-1 splicing revealed an unexpected splicing enhancer role for hnRNP H1 through binding to its target element. IMPORTANCE Alternative splicing of HIV-1 mRNAs is an essential yet quite poorly understood step of virus replication that enhances the coding potential of the viral genome and allows the temporal regulation of viral gene expression. Although HIV-1 constitutes an important model system for general studies of the regulation of alternative splicing, the inputs that determine the efficiency with which splice sites are utilized remain poorly defined. Our studies provide an experimental framework to study an essential step of HIV-1 replication more comprehensively and in much greater detail than was previously possible and reveal novel cis-acting elements regulating HIV-1 splicing.


2021 ◽  
Author(s):  
Kevin Tsai ◽  
Hal P. Bogerd ◽  
Edward M. Kennedy ◽  
Ann Emery ◽  
Ronald Swanstrom ◽  
...  

AbstractPrevious work in several laboratories has demonstrated that the epitranscriptomic addition of m6A to viral transcripts promotes the replication and pathogenicity of a wide range of DNA and RNA viruses, yet the underlying mechanisms responsible for this positive effect have remained unclear. It is known that m6A function is largely mediated by cellular m6A binding proteins or readers, yet how m6A readers regulate viral gene expression in general, and HIV-1 gene expression in particular, has been controversial. Here, we confirm that m6A addition indeed regulates HIV-1 RNA expression and demonstrate that this effect is in large part mediated by the the nuclear m6A reader YTHDC1 and the cytoplasmic m6A reader YTHDF2. Both YTHDC1 and YTHDF2 bind to multiple distinct and overlapping sites on the HIV-1 RNA genome, with YTHDC1 recruitment serving to regulate the alternative splicing of HIV-1 RNAs while YTHDF2 binding correlates with increased HIV-1 transcript stability.Author SummaryThis manuscript reports that the expression of mRNAs encoded by the pathogenic human retrovirus HIV-1 is regulated by the methylation of a small number of specific adenosine residues. These in turn recruit a nuclear RNA binding protein, called YTHDC1, which modulates the alternative splicing of HIV-1 transcripts, as well as a cytoplasmic RNA binding protein, called YTHDF2, which stabilizes viral mRNAs. The regulation of HIV-1 gene expression by adenosine methylation is therefore critical for the effective and ordered expression of HIV-1 mRNAs and could represent a novel target for antiviral development.


Retrovirology ◽  
2009 ◽  
Vol 6 (S2) ◽  
Author(s):  
Mahesh Bachu ◽  
Rajesh V Murali ◽  
Anil MHKH Babu ◽  
Venkat SRK Yedavalli ◽  
Kuan-Teh Jeang ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-28 ◽  
Author(s):  
Luna Li ◽  
Satinder Dahiya ◽  
Sandhya Kortagere ◽  
Benjamas Aiamkitsumrit ◽  
David Cunningham ◽  
...  

The human immunodeficiency virus type 1 (HIV-1) promoter or long-terminal repeat (LTR) regulates viral gene expression by interacting with multiple viral and host factors. The viral transactivator protein Tat plays an important role in transcriptional activation of HIV-1 gene expression. Functional domains of Tat and its interaction with transactivation response element RNA and cellular transcription factors have been examined. Genetic variation withintatof different HIV-1 subtypes has been shown to affect the interaction of the viral transactivator with cellular and/or viral proteins, influencing the overall level of transcriptional activation as well as its action as a neurotoxic protein. Consequently, the genetic variability withintatmay impact the molecular architecture of functional domains of the Tat protein that may impact HIV pathogenesis and disease. Tat as a therapeutic target for anti-HIV drugs has also been discussed.


2017 ◽  
Vol 3 ◽  
pp. 8
Author(s):  
R. Verdikt ◽  
L. Colin ◽  
C. Vanhulle ◽  
B. Van Driessche ◽  
A. Kula ◽  
...  

Virology ◽  
1990 ◽  
Vol 177 (1) ◽  
pp. 380-383 ◽  
Author(s):  
V.S. Kalyanaraman ◽  
V. Rodriguez ◽  
S. Josephs ◽  
R.C. Gallo ◽  
M.G. Sarngadharan

2019 ◽  
Vol 26 (2) ◽  
pp. 217-227.e6 ◽  
Author(s):  
David G. Courtney ◽  
Kevin Tsai ◽  
Hal P. Bogerd ◽  
Edward M. Kennedy ◽  
Brittany A. Law ◽  
...  

1999 ◽  
Vol 19 (7) ◽  
pp. 4592-4599 ◽  
Author(s):  
Paul D. Bieniasz ◽  
Therese A. Grdina ◽  
Hal P. Bogerd ◽  
Bryan R. Cullen

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) Tat protein (hTat) activates transcription initiated at the viral long terminal repeat (LTR) promoter by a unique mechanism requiring recruitment of the human cyclin T1 (hCycT1) cofactor to the viral TAR RNA target element. While activation of equine infectious anemia virus (EIAV) gene expression by the EIAV Tat (eTat) protein appears similar in that the target element is a promoter proximal RNA, eTat shows little sequence homology to hTat, does not activate the HIV-1 LTR, and is not active in human cells that effectively support hTat function. To address whether eTat and hTat utilize similar or distinct mechanisms of action, we have cloned the equine homolog of hCycT1 (eCycT1) and examined whether it is required to mediate eTat function. Here, we report that expression of eCycT1 in human cells fully rescues eTat function and that eCycT1 and eTat form a protein complex that specifically binds to the EIAV, but not the HIV-1, TAR element. While hCycT1 is also shown to interact with eTat, the lack of eTat function in human cells is explained by the failure of the resultant protein complex to bind to EIAV TAR. Critical sequences in eCycT1 required to support eTat function are located very close to the amino terminus, i.e., distal to the HIV-1 Tat-TAR interaction motif previously identified in the hCycT1 protein. Together, these data provide a molecular explanation for the species tropism displayed by eTat and demonstrate that highly divergent lentiviral Tat proteins activate transcription from their cognate LTR promoters by essentially identical mechanisms.


1997 ◽  
Vol 3 (4) ◽  
pp. 290-298 ◽  
Author(s):  
Fabrizio Ensoli ◽  
Hong Wang ◽  
Valeria Fiorelli ◽  
Steven L Zeichner ◽  
Maria Rita De Cristofaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document