scholarly journals The origin and evolution of a distinct mechanism of transcription initiation in yeasts

Author(s):  
Zhaolian Lu ◽  
Zhenguo Lin

ABSTRACTThe molecular process of transcription by RNA Polymerase II is highly conserved among eukaryotes (“classic model”). Intriguingly, a distinct way of locating transcription start sites (TSSs) was found in a budding yeast Saccharomyces cerevisiae (“scanning model”). The origin of the “scanning model” and its underlying genetic mechanisms remain unsolved. Herein, we applied genomic approaches to address these questions. We first identified TSSs at a single-nucleotide resolution for 12 yeast species using the nAnT-iCAGE technique, which significantly improved the annotations of these genomes by providing accurate 5’boundaries of protein-coding genes. We then infer the initiation mechanism of a species based on its TSS maps and genome sequences. We found that the “scanning model” had originated after the split of Yarrowia lipolytica and the rest of budding yeasts. An adenine-rich region immediately upstream of TSS had appeared during the evolution of the “scanning model” species, which might facilitate TSS selection in these species. Both initiation mechanisms share a strong preference for pyrimidine-purine dinucleotides surrounding the TSS. Our results suggested that the purine is required for accurately recruiting the first nucleotide, increasing the chance of being capped during mRNA maturation, which is critical for efficient translation initiation. Based on our findings, we proposed a model of TSS selection for the “scanning model” species. Besides, our study also demonstrated that the intrinsic sequence feature primarily determines the distribution of initiation activities within a core promoter (core promoter shape).

2021 ◽  
Vol 90 (1) ◽  
pp. 193-219
Author(s):  
Emmanuel Compe ◽  
Jean-Marc Egly

In eukaryotes, transcription of protein-coding genes requires the assembly at core promoters of a large preinitiation machinery containing RNA polymerase II (RNAPII) and general transcription factors (GTFs). Transcription is potentiated by regulatory elements called enhancers, which are recognized by specific DNA-binding transcription factors that recruit cofactors and convey, following chromatin remodeling, the activating cues to the preinitiation complex. This review summarizes nearly five decades of work on transcription initiation by describing the sequential recruitment of diverse molecular players including the GTFs, the Mediator complex, and DNA repair factors that support RNAPII to enable RNA synthesis. The elucidation of the transcription initiation mechanism has greatly benefited from the study of altered transcription components associated with human diseases that could be considered transcription syndromes.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Mrutyunjaya Parida ◽  
Kyle A. Nilson ◽  
Ming Li ◽  
Christopher B. Ball ◽  
Harrison A. Fuchs ◽  
...  

ABSTRACTThe large genome of human cytomegalovirus (HCMV) is transcribed by RNA polymerase II (Pol II). However, it is not known how closely this betaherpesvirus follows host transcriptional paradigms. We applied PRO-Seq and PRO-Cap methods to profile and quantify transcription initiation and productive elongation across the host and virus genomes in late infection. A major similarity between host transcription and viral transcription is that treatment of cells with the P-TEFb inhibitor flavopiridol preempts virtually all productive elongation, which otherwise covers most of the HCMV genome. The deep, nucleotide resolution identification of transcription start sites (TSSs) enabled an extensive analysis of core promoter elements. An important difference between host and viral transcription is that initiation is much more pervasive on the HCMV genome. The sequence preferences in the initiator region around the TSS and the utilization of upstream T/A-rich elements are different. Upstream TATA positions the TSS and boosts initiation in both the host and the virus, but upstream TATT has a significant stimulatory impact only on the viral template. The major immediate early (MIE) promoter remained active during late infection and was accompanied by transcription of both strands of the MIE enhancer from promoters within the enhancer. Surprisingly, we found that the long noncoding RNA4.9 is intimately associated with the viral origin of replication (oriLyt) and was transcribed to a higher level than any other viral or host promoter. Finally, our results significantly contribute to the idea that late in infection, transcription takes place on viral genomes that are not highly chromatinized.IMPORTANCEHuman cytomegalovirus infects more than half of humans, persists silently in virtually all tissues, and produces life-threatening disease in immunocompromised individuals. HCMV is also the most common infectious cause of birth defects and the leading nongenetic cause of sensorineural hearing loss in the United States. Because there is no vaccine and current drugs have problems with potency, toxicity, and antiviral drug resistance, alternative treatment strategies that target different points of viral control are needed. Our current study contributes to this goal by applying newly developed methods to examine transcription of the HCMV and host genomes at nucleotide resolution in an attempt to find targetable differences between the two. After a thorough analysis of productive elongation and of core promoter element usage, we found that some mechanisms of regulating transcription are shared between the host and HCMV but that others are distinctly different. This suggests that HCMV transcription may be a legitimate target for future antiviral therapies and this might translate to other herpesviruses.


2017 ◽  
Author(s):  
Kapil Gupta ◽  
Aleksandra A. Watson ◽  
Tiago Baptista ◽  
Elisabeth Scheer ◽  
Anna L. Chambers ◽  
...  

AbstractGeneral transcription factor TFIID is a key component of RNA polymerase II transcription initiation. Human TFIID is a megadalton-sized complex comprising TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs). TBP binds to core promoter DNA, recognizing the TATA-box. We identified a ternary complex formed by TBP and the histone fold (HF) domain-containing TFIID subunits TAF11 and TAF13. We demonstrate that TAF11/TAF13 competes for TBP binding with TATA-box DNA, and also with the N-terminal domain of TAF1 previously implicated in TATA-box mimicry. In an integrative approach combining crystal coordinates, biochemical analyses and data from cross-linking mass-spectrometry (CLMS), we determine the architecture of the TAF11/TAF13/TBP complex, revealing TAF11/TAF13 interaction with the DNA binding surface of TBP. We identify a highly conserved C-terminal TBP-binding domain (CTID) in TAF13 which is essential for supporting cell growth. Our results thus have implications for cellular TFIID assembly and suggest a novel regulatory state for TFIID function.


2021 ◽  
Author(s):  
Hanneke Vlaming ◽  
Claudia A Mimoso ◽  
Benjamin JE Martin ◽  
Andrew R Field ◽  
Karen Adelman

Organismal growth and development rely on RNA Polymerase II (RNAPII) synthesizing the appropriate repertoire of messenger RNAs (mRNAs) from protein-coding genes. Productive elongation of full-length transcripts is essential for mRNA function, however what determines whether an engaged RNAPII molecule will terminate prematurely or transcribe processively remains poorly understood. Notably, despite a common process for transcription initiation across RNAPII-synthesized RNAs, RNAPII is highly susceptible to termination when transcribing non-coding RNAs such as upstream antisense RNAs (uaRNAs) and enhancers RNAs (eRNAs), suggesting that differences arise during RNAPII elongation. To investigate the impact of transcribed sequence on elongation potential, we developed a method to screen the effects of thousands of INtegrated Sequences on Expression of RNA and Translation using high-throughput sequencing (INSERT-seq). We found that higher AT content in uaRNAs and eRNAs, rather than specific sequence motifs, underlies the propensity for RNAPII termination on these transcripts. Further, we demonstrate that 5' splice sites exert both splicing-dependent and autonomous, splicing-independent stimulation of transcription, even in the absence of polyadenylation signals. Together, our results reveal a potent role for transcribed sequence in dictating gene output at mRNA and non-coding RNA loci, and demonstrate the power of INSERT-seq towards illuminating these contributions.


2020 ◽  
Author(s):  
D.E. Goszczynski ◽  
M.M. Halstead ◽  
A.D. Islas-Trejo ◽  
H. Zhou ◽  
P.J. Ross

ABSTRACTCharacterizing transcription start sites is essential for understanding the regulatory mechanisms that control gene expression. Recently, a new bovine genome assembly (ARS-UCD1.2) with high continuity, accuracy, and completeness was released; however, the functional annotation of the bovine genome lacks precise transcription start sites and includes a low number of transcripts in comparison to human and mouse. Using the RAMPAGE approach, this study identified transcription start sites at high resolution in a large collection of bovine tissues. We found several known and novel transcription start sites attributed to promoters of protein coding and lncRNA genes that were validated through experimental and in silico evidence. With these findings, the annotation of transcription start sites in cattle reached a level comparable to the mouse and human genome annotations. In addition, we identified and characterized transcription start sites for antisense transcripts derived from bidirectional promoters, potential lncRNAs, mRNAs, and pre-miRNAs. We also analyzed the quantitative aspects of RAMPAGE data for producing a promoter activity atlas, reaching highly reproducible results comparable to traditional RNA-Seq. Lastly, gene co-expression networks revealed an impressive use of tissue-specific promoters, especially between brain and testicle, which expressed several genes in common from alternate transcription start sites. Regions surrounding co-expressed modules were enriched in binding factor motifs representative of their tissues. This annotation will be highly useful for future studies on expression control in cattle and other species. Furthermore, these data provide significant insight into transcriptional activity for a comprehensive set of tissues.


2021 ◽  
Author(s):  
Anne-Laure Valton ◽  
Sergey V Venev ◽  
Barbara Mair ◽  
Eraj Khokhar ◽  
Amy H Tong ◽  
...  

Cohesin-mediated loop extrusion folds interphase chromosomes at the ten to hundreds kilobases scale. This process produces structural features such as loops and topologically associating domains. We identify three types of cis-elements that define the chromatin folding landscape generated by loop extrusion. First, CTCF sites form boundaries by stalling extruding cohesin, as shown before. Second, transcription termination sites form boundaries by acting as cohesin unloading sites. RNA polymerase II contributes to boundary formation at transcription termination sites. Third, transcription start sites form boundaries that are mostly independent of cohesin, but are sites where cohesin can pause. Together with cohesin loading at enhancers, and possibly other cis-elements, these loci create a dynamic pattern of cohesin traffic along the genome that guides enhancer-promoter interactions. Disturbing this traffic pattern, by removing CTCF barriers, renders cells sensitive to knock-out of genes involved in transcription initiation, such as the SAGA and TFIID complexes, and RNA processing such DEAD-Box RNA helicases. In the absence of CTCF, several of these factors fail to be efficiently recruited to active promoters. We propose that the complex pattern of cohesin movement along chromatin contributes to appropriate promoter-enhancer interactions and localization of transcription and RNA processing factors to active genes.


2019 ◽  
Vol 47 (13) ◽  
pp. 6714-6725 ◽  
Author(s):  
Chen Chen ◽  
Jie Shu ◽  
Chenlong Li ◽  
Raj K Thapa ◽  
Vi Nguyen ◽  
...  

Abstract SPT6 is a conserved elongation factor that is associated with phosphorylated RNA polymerase II (RNAPII) during transcription. Recent transcriptome analysis in yeast mutants revealed its potential role in the control of transcription initiation at genic promoters. However, the mechanism by which this is achieved and how this is linked to elongation remains to be elucidated. Here, we present the genome-wide occupancy of Arabidopsis SPT6-like (SPT6L) and demonstrate its conserved role in facilitating RNAPII occupancy across transcribed genes. We also further demonstrate that SPT6L enrichment is unexpectedly shifted, from gene body to transcription start site (TSS), when its association with RNAPII is disrupted. Protein domains, required for proper function and enrichment of SPT6L on chromatin, are subsequently identified. Finally, our results suggest that recruitment of SPT6L at TSS is indispensable for its spreading along the gene body during transcription. These findings provide new insights into the mechanisms underlying SPT6L recruitment in transcription and shed light on the coordination between transcription initiation and elongation.


2006 ◽  
Vol 73 ◽  
pp. 225-236 ◽  
Author(s):  
Petra Gross ◽  
Thomas Oelgeschläger

The initiation of mRNA synthesis in eukaryotic cells is a complex and highly regulated process that requires the assembly of general transcription factors and RNAP II (RNA polymerase II; also abbreviated as Pol II) into a pre-initiation complex at the core promoter. The core promoter is defined as the minimal DNA region that is sufficient to direct low levels of activator-independent (basal) transcription by RNAP II in vitro. The core promoter typically extends approx. 40 bp up- and down-stream of the start site of transcription and can contain several distinct core promoter sequence elements. Core promoters in higher eukaryotes are highly diverse in structure, and each core promoter sequence element is only found in a subset of genes. So far, only TATA box and INR (initiator) element have been shown to be capable of directing accurate RNAP II transcription initiation independent of other core promoter elements. Computational analysis of metazoan genomes suggests that the prevalence of the TATA box has been overestimated in the past and that the majority of human genes are TATA-less. While TATA-mediated transcription initiation has been studied in great detail and is very well understood, very little is known about the factors and mechanisms involved in the function of the INR and other core promoter elements. Here we summarize our current understanding of the factors and mechanisms involved in core promoter-selective transcription and discuss possible pathways through which diversity in core promoter architecture might contribute to combinatorial gene regulation in metazoan cells.


2015 ◽  
Vol 35 (12) ◽  
pp. 2103-2118 ◽  
Author(s):  
Petros Papadopoulos ◽  
Laura Gutiérrez ◽  
Jeroen Demmers ◽  
Elisabeth Scheer ◽  
Farzin Pourfarzad ◽  
...  

The ordered assembly of a functional preinitiation complex (PIC), composed of general transcription factors (GTFs), is a prerequisite for the transcription of protein-coding genes by RNA polymerase II. TFIID, comprised of the TATA binding protein (TBP) and 13 TBP-associated factors (TAFs), is the GTF that is thought to recognize the promoter sequences allowing site-specific PIC assembly. Transcriptional cofactors, such as SAGA, are also necessary for tightly regulated transcription initiation. The contribution of the two TAF10-containing complexes (TFIID, SAGA) to erythropoiesis remains elusive. By ablating TAF10 specifically in erythroid cellsin vivo, we observed a differentiation block accompanied by deregulated GATA1 target genes, includingGata1itself, suggesting functional cross talk between GATA1 and TAF10. Additionally, we analyzed by mass spectrometry the composition of TFIID and SAGA complexes in mouse and human cells and found that their global integrity is maintained, with minor changes, during erythroid cell differentiation and development. In agreement with our functional data, we show that TAF10 interacts directly with GATA1 and that TAF10 is enriched on theGATA1locus in human fetal erythroid cells. Thus, our findings demonstrate a cross talk between canonical TFIID and SAGA complexes and cell-specific transcription activators during development and differentiation.


Sign in / Sign up

Export Citation Format

Share Document