scholarly journals Pacing strategy in horse racing

2020 ◽  
Author(s):  
Quentin Mercier ◽  
Amandine Aftalion

AbstractThanks to velocity data on races in Chantilly (France), we set a mathematical model which provides the optimal pacing strategy for horses on a fixed distance. It relies on mechanics, energetics (both aerobic and anaerobic) and motor control. We identify the parameters useful for the model from the data. Then it allows to understand the velocity, the oxygen uptake evolution in a race, as well as the energy or the propulsive force and predict the changes in pacing according to the properties (altitude and bending) of the track.

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0235024
Author(s):  
Quentin Mercier ◽  
Amandine Aftalion

The objective of this work is to provide a mathematical analysis on how a Thoroughbred horse should regulate its speed over the course of a race to optimize performance. Because Thoroughbred horses are not capable of running the whole race at top speed, determining what pace to set and when to unleash the burst of speed is essential. Our model relies on mechanics, energetics (both aerobic and anaerobic) and motor control. It is a system of coupled ordinary differential equations on the velocity, the propulsive force and the anaerobic energy, that leads to an optimal control problem that we solve. In order to identify the parameters meaningful for Thoroughbred horses, we use velocity data on races in Chantilly (France) provided by France Galop, the French governing body of flat horse racing in France. Our numerical simulations of performance optimization then provide the optimal speed along the race, the oxygen uptake evolution in a race, as well as the energy or the propulsive force. It also predicts how the horse has to change its effort and velocity according to the topography (altitude and bending) of the track.


2010 ◽  
Vol 26 (2) ◽  
pp. 171-179 ◽  
Author(s):  
Mike D. Quinn

A mathematical model based on a differential equation of motion is used to simulate the 400-m hurdles race for men and women. The model takes into account the hurdler’s stride pattern, the hurdle clearance, and aerobic and anaerobic components of the propulsive force of the athlete, as well as the effects of wind resistance, altitude of the venue, and curvature of the track. The model is used to predict the effect on race times of different wind conditions and altitudes. The effect on race performance of the lane allocation and the efficiency of the hurdle clearance is also predicted. The most favorable wind conditions are shown to be a wind speed no greater than 2 m/s assisting the athlete in the back straight and around the second bend. The outside lane (lane 8) is shown to be considerably faster than the favored center lanes. In windless conditions, the advantage can be as much as 0.15 s for men and 0.12 s for women. It is shown that these values are greatly affected by the wind conditions.


2014 ◽  
Vol 44 (1) ◽  
pp. 211-221 ◽  
Author(s):  
Arkadiusz Stanula ◽  
Robert Roczniok

Abstract The purpose of this study was to determine ice-hockey players’ playing intensity based on their heart rates (HRs) recorded during a game and on the outcomes of an incremental maximum oxygen uptake test. Twenty ice-hockey players, members of the Polish junior national team (U18), performed an incremental test to assess their maximal oxygen uptake (V̇ O2max) in the two week’s period preceding 5 games they played at the World Championships. Players’ HRs at the first and second ventilatory thresholds obtained during the test were utilized to determine intensity zones (low, moderate, and high) that were subsequently used to classify HR values recorded during each of the games. For individual intensity zones, the following HRs expressed as mean values and as percentages of the maximal heart rate (HRmax) were obtained: forwards 148-158 b⋅min-1 (79.5-84.8% HRmax), 159-178 b⋅min-1 (85.4-95.6% HRmax), 179-186 b⋅min-1 (96.1-100.0% HRmax); defensemen 149-153 b⋅min-1 (80.0-82.1% HRmax), 154-175 b⋅min-1 (82.6- 94.0% HRmax), 176-186 b⋅min-1 (94.5-100.0% HRmax). The amount of time the forwards and defensemen spent in the three intensity zones expressed as percentages of the total time of the game were: 54.91 vs. 55.62% (low), 26.40 vs. 22.38% (moderate) and 18.68 vs. 22.00% (high). The forwards spent more time in the low intensity zone than the defensemen, however, the difference was not statistically significant. The results of the study indicate that using aerobic and anaerobic metabolism variables to determine intensity zones can significantly improve the reliability of evaluation of the physiological demands of the game, and can be a useful tool for coaches in managing the training process.


2021 ◽  
Author(s):  
Manuel Angulo ◽  
Alejandra Polanco ◽  
Luis Muñoz

Abstract Pacing strategies are used in cycling to optimize the power delivered by the cyclist during a race. Gains in race time have been obtained when using these strategies compared to self-paced approaches. For this reason, this study is focused on revising the effect that the variation of the cyclist’s parameters has on the pacing strategy and its results. A numeric method was used to propose pacing strategies for a cyclist riding on an ascending 3.7 km route with a constant 6.26% road grade. The method was validated and then implemented to study the effect of aerobic and anaerobic power delivery capacity, mass, and drag area on the pacing strategies and their corresponding estimated race times. The results showed that modifying 1% of the aerobic capacity or cyclist mass value led to a change of 1% on the race time. Modifying 1% the anaerobic capacity and the drag area led to changes of 0.03% and 0.02% on the race time, respectively. These results are strongly dependent on the route characteristics. It was concluded that for the studied route (constantly ascending), the variation of the cyclist’s aerobic capacity influences the pacing strategy (i.e., the power delivery over the distance). The anaerobic capacity and mass of the cyclist also influence the pacing strategy to a lesser extent.


2016 ◽  
Vol 41 (8) ◽  
pp. 864-871 ◽  
Author(s):  
Phillip M. Bellinger ◽  
Clare L. Minahan

The present study investigated the effects of β-alanine supplementation on the resultant blood acidosis, lactate accumulation, and energy provision during supramaximal-intensity cycling, as well as the aerobic and anaerobic contribution to power output during a 4000-m cycling time trial (TT). Seventeen trained cyclists (maximal oxygen uptake = 4.47 ± 0.55 L·min−1) were administered 6.4 g of β-alanine (n = 9) or placebo (n = 8) daily for 4 weeks. Participants performed a supramaximal cycling test to exhaustion (equivalent to 120% maximal oxygen uptake) before (PreExh) and after (PostExh) the 4-week supplementation period, as well as an additional postsupplementation supramaximal cycling test identical in duration and power output to PreExh (PostMatch). Anaerobic capacity was quantified and blood pH, lactate, and bicarbonate concentrations were measured pre-, immediately post-, and 5 min postexercise. Subjects also performed a 4000-m cycling TT before and after supplementation while the aerobic and anaerobic contributions to power output were quantified. β-Alanine supplementation increased time to exhaustion (+12.8 ± 8.2 s; P = 0.041) and anaerobic capacity (+1.1 ± 0.7 kJ; P = 0.048) in PostExh compared with PreExh. Performance time in the 4000-m TT was reduced following β-alanine supplementation (−6.3 ± 4.6 s; P = 0.034) and the mean anaerobic power output was likely to be greater (+6.2 ± 4.5 W; P = 0.035). β-Alanine supplementation increased time to exhaustion concomitant with an augmented anaerobic capacity during supramaximal intensity cycling, which was also mirrored by a meaningful increase in the anaerobic contribution to power output during a 4000-m cycling TT, resulting in an enhanced overall performance.


1996 ◽  
Vol 8 (1) ◽  
pp. 77-86 ◽  
Author(s):  
Glen E. Duncan ◽  
Anthony D. Mahon ◽  
Cheryl A. Howe ◽  
Pedro Del Corral

This study examined the influence of test duration and anaerobic capacity on VO2max and the occurrence of a VO2 plateau during treadmill exercise in 25 boys (10.4 ± 0.8 years). Protocols with 1-min (P1) and 2-min (P2) stages, but identical speed and grade changes, were used to manipulate test duration. On separate days, VO2max was measured on P1 and P2, and 200-m run time was assessed. At maximal exercise, VO2, heart rate (HR), and pulmonary ventilation (VE) were similar between protocols, however, respiratory exchange ratio (RER) and treadmill elevation were higher (p < .05) on P1 than on P2. Plateau achievement was not significantly different. On P1, there were no differences between plateau achievers and nonachievers. On P2, test duration and 200-m run time were superior (p < .05), and relative VO2max tended to be higher (p < .10) in plateau achievers. Indices of aerobic and anaerobic capacity may influence plateau achievement on long, but not short duration tests.


2005 ◽  
Vol 22 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Victoria L. Goosey-Tolfrey

The purpose of this study was to examine the physiological changes in elite wheelchair basketball players leading up to the 2000 Paralympics. Twelve male players attended regular physiological assessments on six occasions; averaged data of two sessions for each year were used. Physiological measures included body mass, skinfold measurements, peak oxygen uptake and peak power obtained during maximal sprinting. VO2peak significantly increased from 2.65 to 2.83 L·min-1 prior to the Paralympics. Training had little influence on the anthropometric measurements or maximal sprinting data. In conclusion, the GB wheelchair basketball players appeared to have high levels of aerobic and anaerobic fitness. The longitudinal physiological profiles leading to the 2000 Paralympics suggest that players improved their aerobic base while maintaining other fitness prerequisites.


Sign in / Sign up

Export Citation Format

Share Document