Orbitofrontal cortex neurons code utility changes during natural reward consumption as correlates of relative reward-specific satiety
AbstractNatural, on-going reward consumption can differentially reduce the subjective value (‘utility’) of specific rewards, which indicates relative, reward-specific satiety. Two-dimensional choice indifference curves (IC) represent the utility of choice options with two distinct reward components (‘bundles’) according to Revealed Preference Theory. We estimated two-dimensional ICs from stochastic choices and found that natural on-going consumption of two bundle rewards induced specific IC distortions that indicated differential reduction of reward utility indicative of relative reward-specific satiety. Licking changes confirmed satiety in a mechanism-independent manner. Neuronal signals in orbitofrontal cortex (OFC) that coded the value of the chosen option followed closely the consumption-induced IC distortions within recording periods of individual neurons. A neuronal classifier predicted well the changed utility inferred from the altered behavioral choices. Neuronal signals for more conventional single-reward choice options showed similar relationships to utility alterations from on-going consumption. These results demonstrate a neuronal substrate for the differential, reward-specific alteration of utility by on-going reward consumption reflecting reward-specific satiety.SignificanceRepeated delivery reduces the subjective value (‘utility’) of rewards to different degrees depending on their individual properties, a phenomenon commonly referred to as sensory-specific satiety. We tested monkeys during economic choice of two-component options. On-going consumption differentially reduced reward utility in a way that suggested relative reward-specific satiety between the two components. Neurons in the orbitofrontal cortex (OFC) changed their responses in close correspondence to the differential utility reduction, thus representing a neuronal correlate of relative reward-specific satiety. Control experiments with conventional single-component choice showed similar satiety-induced differential response reductions. These results are compatible with the notion of OFC neurons coding crucial decision variables robustly across different satiety levels.