Crosstalk between chloroplast protein import and the SUMO system revealed through genetic and molecular investigation
AbstractThe chloroplast proteome contains thousands of different proteins that are encoded by the nuclear genome. These proteins are imported into the chloroplast via the action of the TOC translocase and associated downstream systems. Our recent work has revealed that the stability of the TOC complex is dynamically regulated via the ubiquitin-dependent chloroplast-associated protein degradation (CHLORAD) pathway. Here, we demonstrate that the stability of the TOC complex is also regulated by the SUMO system. Arabidopsis mutants representing almost the entire SUMO conjugation pathway can partially suppress the phenotype of ppi1, a pale yellow mutant lacking the Toc33 protein. This suppression is linked to increased stability of TOC proteins and enhanced chloroplast development. In addition, we demonstrate using molecular and biochemical experiments that the SUMO system directly targets TOC proteins. Thus, we have identified a regulatory link between the SUMO system and chloroplast protein import.