scholarly journals Low-cost 3D-printed inverted microscope to detect Mycobacterium tuberculosis in a MODS culture

2020 ◽  
Author(s):  
Mario Salguedo ◽  
Guillermo Zarate ◽  
Robert H. Gilman ◽  
Germán Comina ◽  
Jorge Coronel ◽  
...  

AbstractBackgroundThe MODS is an important assay for early diagnosis of tuberculosis and drug susceptibility. MODS is based in the microscopic observation, underneath, of the characteristic cords of Mycobacterium tuberculosis colonies grown in liquid media. An inverted optical microscope is required to observe and interpret MODS cultures. Unfortunately, the cost of commercial inverted microscopes is not affordable in low resource settings in developing countries.MethodologyTo perform a diagnosis of tuberculosis using the MODS assay, images with modest quality are enough for proper interpretation. Therefore, the use of a high cost commercial inverted optical microscope is not indispensable. In this study, we designed a prototype of an optical inverted microscope created with a 3D printer and based on a smartphone. The system was evaluated by comparison of manual interpretations of 226 TB positive MODS culture images and 207 negative MODS culture images.SignificanceThe prototype resulted in a low-cost inverted optical microscope, with simple functioning, and whose parts have been manufactured using 3D printing techniques. The quality of the images was good enough and achieved a 100% concordance between the manual inspection with the developed microscope, and the standard diagnostics of MODS.

Tuberculosis ◽  
2021 ◽  
pp. 102158
Author(s):  
Mario Salguedo ◽  
Guillermo Zarate ◽  
Jorge Coronel ◽  
Germán Comina ◽  
Robert H. Gilman ◽  
...  

Author(s):  
W. Ostrowski ◽  
K. Hanus

One of the popular uses of UAVs in photogrammetry is providing an archaeological documentation. A wide offer of low-cost (consumer) grade UAVs, as well as the popularity of user-friendly photogrammetric software allowing obtaining satisfying results, contribute to facilitating the process of preparing documentation for small archaeological sites. However, using solutions of this kind is much more problematic for larger areas. The limited possibilities of autonomous flight makes it significantly harder to obtain data for areas too large to be covered during a single mission. Moreover, sometimes the platforms used are not equipped with telemetry systems, which makes navigating and guaranteeing a similar quality of data during separate flights difficult. The simplest solution is using a better UAV, however the cost of devices of such type often exceeds the financial capabilities of archaeological expeditions. <br><br> The aim of this article is to present methodology allowing obtaining data for medium scale areas using only a basic UAV. The proposed methodology assumes using a simple multirotor, not equipped with any flight planning system or telemetry. Navigating of the platform is based solely on live-view images sent from the camera attached to the UAV. The presented survey was carried out using a simple GoPro camera which, from the perspective of photogrammetric use, was not the optimal configuration due to the fish eye geometry of the camera. Another limitation is the actual operational range of UAVs which in the case of cheaper systems, rarely exceeds 1 kilometre and is in fact often much smaller. Therefore the surveyed area must be divided into sub-blocks which correspond to the range of the drone. It is inconvenient since the blocks must overlap, so that they will later be merged during their processing. This increases the length of required flights as well as the computing power necessary to process a greater number of images. <br><br> These issues make prospection highly inconvenient, but not impossible. Our paper presents our experiences through two case studies: surveys conducted in Nepal under the aegis of UNESCO, and works carried out as a part of a Polish archaeological expedition in Cyprus, which both prove that the proposed methodology allows obtaining satisfying results. The article is an important voice in the ongoing debate between commercial and academic archaeologists who discuss the balance between the required standards of conducting archaeological works and economic capabilities of archaeological missions.


Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 21
Author(s):  
Bruno Lourenço ◽  
Vitorino Neto ◽  
Rafhael de Andrade

The Hands exert a vital role in the simplest to most complex daily tasks. Losing the ability to make hand movements, which is usually caused by spinal cord injury or stroke, dramatically impacts the quality of life. In order to counteract this problem, several assisting devices have been proposed, but they still present several usage limitations. The marketable orthoses are generally either the static type or over-expensive active orthosis that cannot perform the same degrees of freedom (DoF) that a hand can do. This paper presents a conceptual design of a tendon-driven mechanism for hand’s active orthosis. This study is a part of an effort to develop an effective and low-cost hand’s orthosis for people with hand paralysis. The tendon design proposed was thought to comply with some requisitions such as lightness and low volume, as well as fit with the biomechanical constraints of the hand joints to enable a comfortable use. The mechanism employs small cursors on the phalanges to allow the tendons to run on the dorsal side and by both sides of the fingers, allowing 2 DoF for each finger, and one extra tendon enlarges the hands’ adduction nuances. With this configuration, it is simple enough to execute the flexion and extension movements, which are the most used movements in daily actives, using one single DC actuator for one DoF to reduce manufacturing costs, or with more DC actuators to enable more natural hand coordination. This system of actuation is suitable to create soft exoskeletons for hands easily embedded into 3D printed parts, which could be merged over statics thermoplastic orthosis. The final orthosis design allows dexterous finger movements and force to grasp objects and perform tasks comfortably.


2019 ◽  
Vol 56 (2) ◽  
pp. 440-443
Author(s):  
Mircea Dorin Vasilescu

The aim of the work is conduct to highlight how the technological parameters has influence of 3D printed DLP on the generation of wheel, made from resin type material. In the first part of the paper is presents how to generate in terms of dimensional aspects specific design cylindrical gears, conical and worm gear. Generating elements intended to reduce the cost of manufacturing of these elements. Also are achieve the specific components of this work are put to test with a laboratory test stand which is presented in the paper in the third part of the paper. The tested gears generated by 3D-printed technique made with 3D printed with FDM or DLP technique. After the constructive aspects, proceed to the identification of conserved quantities, which have an impact both in terms of mechanical strength, but his cinematic, in order to achieve a product with kinematic features and good functional domain specific had in mind. The next part is carried out an analysis of the layers are generated using the DLP and FDM method using an optical microscope with magnification up to 500 times, specially adapted in order to achieve both visualization and measurement of specific elements. In the end part, it will highlight the main issues and the specific recommendations made to obtain such constructive mechanical elements.


2015 ◽  
Vol 220-221 ◽  
pp. 396-400
Author(s):  
Lauryna Šiaudinytė ◽  
Deividas Sabaitis ◽  
Domantas Bručas ◽  
Gintaras Dmitrijev

Production of high precision circular scales is a complicated process requiring expensive equipment and complex processes to achieve. Precision angle measurement equipment tends to be very expensive and therefore not accessible to all in need. Simplification of production of such devices can lead to reducing costs of angle measurement systems ensuring easier accessibility. A new method of producing precision circular scales using low cost mass production can reduce the costs of these devices drastically. Therefore, utilising a common CD technology as the basis for such scales is analysed. This paper deals with the analysis of the newest laser cutting method for plastic circular scales. Preliminary results of manufacturing such scales are presented in the paper as well as measurements of the grating of the scale were performed. The quality of different scales manufactured using different laser types is analysed in the study. The cost – effective alternative of manufacturing circular scales is discussed in the paper.


2021 ◽  
Author(s):  
Mohini Bhupathi ◽  
Ganga Chinna Rao Devarapu

One of the best ways to contain the spread of COVID-19 is frequent testing of as many people as possible and timely isolation of uninfected personnel from infected personnel. However, the cost of massive testing is affordable in many countries. The existing technologies might not be scalable to offer affordable testing for millions of people. To address this issue, novel testing methods based on Loop-Mediated Isothermal Amplification (LAMP) were proposed that are more sensitive, require less reagents and can work with saliva samples instead of more tedious nasal swabs. As a result, LAMP based protocols can make it possible to drive the cost down to one dollar per test. These LAMP based methods require a centrifuge device, mostly for separation of viral particles from reaction inhibitors in saliva samples. However, centrifuge is neither accessible nor affordable in many resource limited settings, especially during this pandemic situation when normal supply chains are heavily disrupted. To overcome these challenges, we invented a low-cost centrifuge that can be useful for carrying out low-cost LAMP based detection of SARS-Cov2 virus in saliva. The 3D printed centrifuge (Mobilefuge) is portable, robust, stable, safe, easy to build and operate. The Mobilefuge doesn't require soldering or programming skills and can be built without any specialised equipment, yet practical enough for high throughput use. More importantly, Mobilefuge can be powered from widely available USB ports, including mobile phones and associated power supplies. This allows the Mobilefuge to be used even in off-grid and resource limited settings. We believe that our invention will aid the efforts to contain the spread of COVID-19 by lowering the costs of testing equipment. Apart from the COVID-19 testing, the Mobilefuge can have applications in the field of biomedical research and diagnostics.


2018 ◽  
Vol 14 (2) ◽  
pp. 69-84
Author(s):  
Héðinn Sigurðsson ◽  
Sunna Gestsdóttir ◽  
Sigríður Halldórsdóttir ◽  
Kristjan G. Guðmundsson

The organization of health care is one of the most complex present day challenges. Like other countries that run socialized health care systems, Icelanders face the question of the role of private enterprise in health care. The objective of this study was two-fold: to compare the cost of 17 private and state-run health care centers in the metropolitan area, and to compare consumer satisfaction related to these. At the beginning of Icelandic settlement, there were statutory laws decreeing that community services should be provided for those in need. By the Health Care Act in 1973, the Icelandic health care system fell under the Nordic welfare society with equal access and a tight safety net. The results show that the private health care centers had a low cost per work unit, but not the lowest. Four to seven state run health care centers had less expenditure per patient than the private centers. The cost of each doctor’s position was highest in one of the private clinics. Patient satisfaction surveys showed that there is no difference in the quality of services between these two different operating modes. A conclusion can be drawn from this study that it is not clear whether private health care improves the use of public funds or increases the quality of services.


2020 ◽  
Vol 166 ◽  
pp. 05003
Author(s):  
Oleksandr Savytskyi ◽  
Maksym Tymoshenko ◽  
Oleksandr Hramm ◽  
Serhii Romanov

Sustainable development of industry is closely related with tries to automate industrial processes in all possible ways. Recent advances in automated control systems have led to decreasing the cost of hardware and energy consumption. This article describes examples of soft sensors using in various industries. The main advantages of soft sensors are low cost, flexibility and versatility. In addition, the soft sensors are environmentally friendly as they significantly reduce the amount of equipment and do not require utilization. Despite these benefits, there are some problems with using them. First problem consists in what information and how needs to be measured to use received data in calculation of another virtual data. Second problem is using proper software and the time of mathematical calculations. The goal of the soft sensors is generation of valid virtual data for the controller to increase the accuracy and quality of the automated control. The article is of interest from the point of view of possibilities to applicate modern technology in solving various tasks of automated control.


2015 ◽  
Vol 14 (4) ◽  
pp. 121-130 ◽  
Author(s):  
Yong Gan ◽  
Lei He ◽  
Yi-feng Yin

Abstract Tag ownership transfer is an important process for RFID system. Besides the user needs to obtain the information concerning the quality of products in some scenarios, which are attached by tags. In this paper, we proposed an ownership transfer protocol with retrospective ability and analyzed its security level by using GNY logic. The results indicate that the ownership transfer protocol provides high-quality security to RFID systems. It provides an authentication between the tag and owners and location privacy of the tag. The protocol enables to resist a replay attack, man-in-the-middle attack and desynchronization attack. It also protects forward security and backward security. Moreover, it provides the information concerning the quality of the product attached by tags. We analyzed the performance of the protocol and implemented it. The results of the empirical study show that the cost time of a tag is less than some other protocols and suitable for low-cost tags.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1441 ◽  
Author(s):  
Tim Collins ◽  
Sandra I. Woolley ◽  
Erlend Gehlken ◽  
Eugene Ch’ng

The photogrammetric acquisition of 3D object models can be achieved by Structure from Motion (SfM) computation of photographs taken from multiple viewpoints. All-around 3D models of small artefacts with complex geometry can be difficult to acquire photogrammetrically and the precision of the acquired models can be diminished by the generic application of automated photogrammetric workflows. In this paper, we present two versions of a complete rotary photogrammetric system and an automated workflow for all-around, precise, reliable and low-cost acquisitions of large numbers of small artefacts, together with consideration of the visual quality of the model textures. The acquisition systems comprise a turntable and (i) a computer and digital camera or (ii) a smartphone designed to be ultra-low cost (less than $150). Experimental results are presented which demonstrate an acquisition precision of less than 40 μ m using a 12.2 Megapixel digital camera and less than 80 μ m using an 8 Megapixel smartphone. The novel contribution of this work centres on the design of an automated solution that achieves high-precision, photographically textured 3D acquisitions at a fraction of the cost of currently available systems. This could significantly benefit the digitisation efforts of collectors, curators and archaeologists as well as the wider population.


Sign in / Sign up

Export Citation Format

Share Document