scholarly journals Statelets: High dimensional predominant shapes in dynamic functional network connectivity

2020 ◽  
Author(s):  
Md Abdur Rahaman ◽  
Eswar Damaraju ◽  
Debbrata Kumar Saha ◽  
Sergey M. Plis ◽  
Vince D. Calhoun

AbstractDynamic functional network connectivity (dFNC) analysis is a widely used approach for capturing brain activation patterns, connectivity states, and network organization. However, a typical sliding window plus clustering (SWC) approaches for analyzing dFNC continuously models the system through a fixed set of connectivity patterns or states. It assumes these patterns are span throughout the brain, but in practice, they are more spatially constrained and temporally short-lived. Thus, SWC is not designed to capture transient dynamic changes nor heterogeneity across subjects/time. Here, we adapt time series motifs to model the temporal dynamics of functional connectivity. We propose a state-space data mining approach that combines a probabilistic pattern summarization framework called ‘Statelets’ — a subset of high dimensional state-shape prototypes capturing the dynamics. We handle scale differences using the earth mover distance and utilize kernel density estimation to build a probability density profile for local motifs. We apply the framework to study dFNC collected from patients with schizophrenia (SZ) and healthy control (HC). Results demonstrate SZ subjects exhibit reduced modularity in their brain network organization relative to HC. These statelets in the HC group show more recurrence across the dFNC time-course compared to the SZ. An analysis of the consistency of the connections across time reveals significant differences within visual, sensorimotor, and default mode regions where HC subjects show higher consistency than SZ. The introduced statelet-approach also enables the handling of dynamic information in cross-modal applications to study healthy and disordered brains and multi-modal fusion within a single dataset.

2021 ◽  
Author(s):  
Robyn L. Miller ◽  
Victor M Vergara ◽  
Godfrey D Pearlson ◽  
Vince D Calhoun

The study of brain network connectivity as a time-varying property began relatively recently and to date has remained primarily concerned with capturing a handful of discrete static states that characterize connectivity as measured on a timescale shorter than that of the full scan. Capturing group-level representations of temporally evolving patterns of connectivity is a challenging and important next step in fully leveraging the information available in large resting state functional magnetic resonance imaging (rs-fMRI) studies. We introduce a flexible, extensible data-driven framework for the stable identification of group-level multiframe (movie-style) dynamic functional network connectivity (dFNC) states. Our approach employs uniform manifold approximation and embedding (UMAP) to produce a continuity-preserving planar embedding of high-dimensional time-varying measurements of whole-brain functional network connectivity. Planar linear exemplars summarizing dominant dynamic trends across the population are computed from local linear approximations to the 2D embedded trajectories. A high-dimensional representation of each 2D exemplar segment is obtained by averaging the dFNC observations corresponding to the n planar nearest neighbors of τ evenly spaced points along the 2D line segment representation (where n is the UMAP number-of-neighbors parameter and τ is the temporal duration of trajectory segments being approximated). Each of the 2D exemplars thus 'lifts' to a multiframe high-dimensional dFNC trajectory of length τ. The collection of high-dimensional temporally evolving dFNC representations (EVOdFNCs) derived in this manner are employed as dynamic basis objects with which to characterize observed high-dimensional dFNC trajectories, which are then expressed as weighted combination of these basis objects. Our approach yields new insights into anomalous patterns of fluidly varying whole brain connectivity that are significantly associated with schizophrenia as a broad diagnosis as well as with certain symptoms of this serious disorder. Importantly, we show that relative to conventional hidden Markov modeling with single-frame unvarying dFNC summary states, EVOdFNCs are more sensitive to positive symptoms of schizophrenia including hallucinations and delusions, suggesting a more dynamic characterization is needed to help illuminate such a complex brain disorder.


2020 ◽  
Author(s):  
Md Abdur Rahaman ◽  
Eswar Damaraju ◽  
Jessica A. Turner ◽  
Theo G.M. van Erp ◽  
Daniel Mathalon ◽  
...  

AbstractBackgroundBrain imaging data collected from individuals are highly complex with unique variation; however, such variation is typically ignored in approaches that focus on group averages or even supervised prediction. State-of-the-art methods for analyzing dynamic functional network connectivity (dFNC) subdivide the entire time course into several (possibly overlapping) connectivity states (i.e., sliding window clusters). Though, such an approach does not factor in the homogeneity of underlying data and may end up with a less meaningful subgrouping of the dataset.MethodsDynamic-N-way tri-clustering (dNTiC) incorporates a homogeneity benchmark to approximate clusters that provide a more apples-to-apples comparison between groups within analogous subsets of time-space and subjects. dNTiC sorts the dFNC states by maximizing similarity across individuals and minimizing variance among the pairs of components within a state.ResultsResulting tri-clusters show significant differences between schizophrenia (SZ) and healthy control (HC) in distinct brain regions. Compared to HC, SZ in most tri-clusters show hypoconnectivity (low positive) among subcortical, default mode, cognitive control but hyper-connectivity (high positive) between sensory networks. In tri-cluster 3, HC subjects show significantly stronger connectivity among sensory networks and anticorrelation between subcortical and sensory networks compared to SZ. Results also provide statistically significant difference in reoccurrence time between SZ and HC subjects for two distinct dFNC states.ConclusionsOutcomes emphasize the utility of the proposed method for characterizing and leveraging variance within high-dimensional data to enhance the interpretability and sensitivity of measurements in the study of a heterogeneous disorder like schizophrenia and in unconstrained experimental conditions such as resting fMRI.


2020 ◽  
Author(s):  
Anna K. Bonkhoff ◽  
Markus D. Schirmer ◽  
Martin Bretzner ◽  
Mark Etherton ◽  
Kathleen Donahue ◽  
...  

AbstractBackground and PurposeTo explore the whole-brain dynamic functional network connectivity patterns in acute ischemic stroke (AIS) patients and their relation to stroke severity in the short and long term.MethodsWe investigated large-scale dynamic functional network connectivity of 41 AIS patients two to five days after symptom onset. Re-occurring dynamic connectivity configurations were obtained using a sliding window approach and k-means clustering. We evaluated differences in dynamic patterns between three NIHSS-stroke severity defined groups (mildly, moderately, and severely affected patients). Furthermore, we established correlation analyses between dynamic connectivity estimates and AIS severity as well as neurological recovery within the first 90 days after stroke (DNIHSS). Finally, we built Bayesian hierarchical models to predict acute ischemic stroke severity and examine the inter-relation of dynamic connectivity and clinical measures, with an emphasis on white matter hyperintensity lesion load.ResultsWe identified three distinct dynamic connectivity configurations in the early post-acute stroke phase. More severely affected patients (NIHSS 10–21) spent significantly more time in a highly segregated dynamic connectivity configuration that was characterized by particularly strong connectivity (three-level ANOVA: p<0.05, post hoc t-tests: p<0.05, FDR-corrected for multiple comparisons). Recovery, as indexed by the realized change of the NIHSS over time, was significantly linked to the acute dynamic connectivity between bilateral intraparietal lobule and left angular gyrus (Pearson’s r = –0.68, p<0.05, FDR-corrected). Increasing dwell times, particularly those in a very segregated connectivity configuration, predicted higher acute stroke severity in our Bayesian modelling framework.ConclusionsOur findings demonstrate transiently increased segregation between multiple functional domains in case of severe AIS. Dynamic connectivity involving default mode network components significantly correlated with recovery in the first three months post-stroke.


Sign in / Sign up

Export Citation Format

Share Document