scholarly journals Targeting uncoupling of copy number and gene expression in cancers

2020 ◽  
Author(s):  
Vakul Mohanty ◽  
Fang Wang ◽  
Gordon Mills ◽  
Ken Chen

AbstractThe high degree of aneuploidy in cancer is likely tolerated via extensive uncoupling of copy number (CN) and mRNA expression (UCNE) of deleterious genes located in copy number aberrations (CNAs). To test the extent and role of UCNE in cancer, we performed integrative analysis of multiomics data across The Cancer Genome Atlas (TCGA), encompassing ∼ 5000 individual tumors. We found many genes having UCNE, the degree of which are associated with increased oncogenic signaling, proliferation and immune-suppression. The occurrence of UCNE appears to be orchestrated by complex epigenetic and regulatory changes, with transcription factors (TFs) playing a prominent role. To further dissect the regulatory mechanisms, we developed a systems-biological approach to identify candidate TFs, which upon perturbation can offset UCNE and reduce tumor fitness. Applying our approach on TCGA data, we identified 20 putative targets, 45% of which were validated by independent sources. Among them are IRF1, which plays a prominent role in anti-tumor immunity and response to immune checkpoint therapy, ETS1, TRIM21 and GATA3, which are associated with anti-tumor immunity, tumor proliferation and metastasis. Together, our study indicates that UCNE is likely an important mechanism in cancer development that can be exploited therapeutically.

Oncogene ◽  
2021 ◽  
Author(s):  
Yong Wu ◽  
Qinhao Guo ◽  
Xingzhu Ju ◽  
Zhixiang Hu ◽  
Lingfang Xia ◽  
...  

AbstractNumerous studies suggest an important role for copy number alterations (CNAs) in cancer progression. However, CNAs of long intergenic noncoding RNAs (lincRNAs) in ovarian cancer (OC) and their potential functions have not been fully investigated. Here, based on analysis of The Cancer Genome Atlas (TCGA) database, we identified in this study an oncogenic lincRNA termed LINC00662 that exhibited a significant correlation between its CNA and its increased expression. LINC00662 overexpression is highly associated with malignant features in OC patients and is a prognostic indicator. LINC00662 significantly promotes OC cell proliferation and metastasis in vitro and in vivo. Mechanistically, LINC00662 is stabilized by heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1). Moreover, LINC00662 exerts oncogenic effects by interacting with glucose-regulated protein 78 (GRP78) and preventing its ubiquitination in OC cells, leading to activation of the oncogenic p38 MAPK signaling pathway. Taken together, our results define an oncogenic role for LINC00662 in OC progression mediated via GRP78/p38 signaling, with potential implications regarding therapeutic targets for OC.


2018 ◽  
Vol 111 (7) ◽  
pp. 664-674 ◽  
Author(s):  
Rongqiang Yang ◽  
Steven W Li ◽  
Zirong Chen ◽  
Xin Zhou ◽  
Wei Ni ◽  
...  

Abstract Background The LKB1 tumor suppressor gene is commonly inactivated in non-small cell lung carcinomas (NSCLC), a major form of lung cancer. Targeted therapies for LKB1-inactivated lung cancer are currently unavailable. Identification of critical signaling components downstream of LKB1 inactivation has the potential to uncover rational therapeutic targets. Here we investigated the role of INSL4, a member of the insulin/IGF/relaxin superfamily, in LKB1-inactivated NSCLCs. Methods INSL4 expression was analyzed using global transcriptome profiling, quantitative reverse transcription PCR, western blotting, enzyme-linked immunosorbent assay, and RNA in situ hybridization in human NSCLC cell lines and tumor specimens. INSL4 gene expression and clinical data from The Cancer Genome Atlas lung adenocarcinomas (n = 515) were analyzed using log-rank and Fisher exact tests. INSL4 functions were studied using short hairpin RNA (shRNA) knockdown, overexpression, transcriptome profiling, cell growth, and survival assays in vitro and in vivo. All statistical tests were two-sided. Results INSL4 was identified as a novel downstream target of LKB1 deficiency and its expression was induced through aberrant CRTC-CREB activation. INSL4 was highly induced in LKB1-deficient NSCLC cells (up to 543-fold) and 9 of 41 primary tumors, although undetectable in all normal tissues except the placenta. Lung adenocarcinomas from The Cancer Genome Atlas with high and low INSL4 expression (with the top 10th percentile as cutoff) showed statistically significant differences for advanced tumor stage (P < .001), lymph node metastasis (P = .001), and tumor size (P = .01). The INSL4-high group showed worse survival than the INSL4-low group (P < .001). Sustained INSL4 expression was required for the growth and viability of LKB1-inactivated NSCLC cells in vitro and in a mouse xenograft model (n = 5 mice per group). Expression profiling revealed INSL4 as a critical regulator of cell cycle, growth, and survival. Conclusions LKB1 deficiency induces an autocrine INSL4 signaling that critically supports the growth and survival of lung cancer cells. Therefore, aberrant INSL4 signaling is a promising therapeutic target for LKB1-deficient lung cancers.


2021 ◽  
Author(s):  
Wancheng Zhao ◽  
Lili Yin

Abstract Background: Hypoxia-related genes have been reported to play important roles in a variety of cancers. However, their roles in ovarian cancer (OC) have remained unknown. The aim of our research was to explore the significance of hypoxia-related genes in OC patients.Methods: In this study, 15 hypoxia-related genes were screened from The Cancer Genome Atlas (TCGA) database to group the ovarian cancer patients using the consensus clustering method. Principal component analysis (PCA) was performed to calculate the hypoxia score for each patient to quantify the hypoxic status. Results: The OC patients from TCGA-OV dataset were divided into two distinct hypoxia statuses (cluster.A and cluster.B) based on the expression level of the 15 hypoxia-related genes. Most hypoxia-related genes were expressed more highly in the cluster.A group than in the cluster.B group. We also found that patients in the cluster.A group exhibited higher expression of immune checkpoint-related genes, epithelial-mesenchymal transition-related genes, and immune activation-related genes, as well as elevated immune infiltrates. PCA algorithm indicated that patients in the cluster.A group had higher hypoxia scores than that in in the cluster.B group.Conclusions: In summary, our research elucidated the vital role of hypoxia-related genes in immune infiltrates of OC. Our investigation of hypoxic status may be able to improve the efficacy of immunotherapy for OC.


2019 ◽  
Vol 26 (1) ◽  
pp. 31-46 ◽  
Author(s):  
Eva Baxter ◽  
Karolina Windloch ◽  
Greg Kelly ◽  
Jason S Lee ◽  
Frank Gannon ◽  
...  

Up to 80% of endometrial and breast cancers express oestrogen receptor alpha (ERα). Unlike breast cancer, anti-oestrogen therapy has had limited success in endometrial cancer, raising the possibility that oestrogen has different effects in both cancers. We investigated the role of oestrogen in endometrial and breast cancers using data from The Cancer Genome Atlas (TCGA) in conjunction with cell line studies. Using phosphorylation of ERα (ERα-pSer118) as a marker of transcriptional activation of ERα in TCGA datasets, we found that genes associated with ERα-pSer118 were predominantly unique between tumour types and have distinct regulators. We present data on the alternative and novel roles played by SMAD3, CREB-pSer133 and particularly XBP1 in oestrogen signalling in endometrial and breast cancer.


2020 ◽  
Vol 41 (8) ◽  
pp. 1065-1073
Author(s):  
Verena Wieser ◽  
Samira Abdel Azim ◽  
Susanne Sprung ◽  
Katharina Knoll ◽  
Johanna Kögl ◽  
...  

Abstract Endometrial cancer (EC) is the most common gynaecologic tumour in the Western world. Previous studies have implicated an imbalance of oestrogens and progestogens in the development of most ECs, while the role of low-grade tissue inflammation remains largely unexplored. We investigated the impact of tumour necrosis factor alpha (TNFα), a central mediator of inflammation and spermatogenesis-associated protein 2 (SPATA2), a regulator of TNF receptor signalling, on clinical outcomes in EC. We evaluated TNFA and SPATA2 transcript levels in 239 EC patients and 25 non-malignant control tissues. Findings were validated in a cohort of 332 EC patients from The Cancer Genome Atlas (TCGA). Expression of TNFA and SPATA2 was increased in EC when compared with control tissues (P &lt; 0.001). TNFA expression correlated with SPATA2 expression in non-malignant (P = 0.003, rS = 0.568) and EC tissue (P = 0.005, rS = 0.179). High TNFA and SPATA2 expression were associated with poor recurrence-free survival (RFS; P = 0.049 and P = 0.018) and disease-specific (P = 0.034 and P = 0.002) survival. Increased SPATA2 expression was also associated with decreased overall survival (OS; P = 0.013). In multivariate analysis, both TNFA and SPATA2 were predictors of clinical outcome. The impact of SPATA2 on RFS and OS could be validated in the TCGA cohort. Our study demonstrates that ECs exhibit a TNF signature which predicts clinical outcome. These findings indicate that TNF signalling modulates the course of EC, which could be therapeutically utilized in the future.


2017 ◽  
Vol 43 (3) ◽  
pp. 1090-1099 ◽  
Author(s):  
Zhonghua Jiang ◽  
Tingting Yu ◽  
Zhining Fan ◽  
Hongmei Yang ◽  
Xin Lin

Background/Aims: Krüppel-like factor (KLF) 7 protein is a member of the KLF transcription factor family, which plays important roles in regulating the expression of genes involved in cell growth, proliferation, differentiation and metabolism. However, the role of KLF7 in gastric cancer (GC) is unknown. The aim of this study is to explore the role of KLF7 in GC and its correlation with clinicopathological characteristics and prognosis of GC patients. Methods: We first systematically evaluated dysregulation of the KLF family in The Cancer Genome Atlas (TCGA) GC database. Then, 252 patients who underwent surgery for GC were enrolled to validate the results from the TCGA. Functional studies were also used to explore the role of KLF7 in GC. Results: In the TCGA database, we found that KLF7 was an independent predictor for survival by both univariate and multivariate analysis (P<0.05). In a validation cohort, KLF7 expression was significantly increased in GC tissues compared with adjacent normal controls (P=0.013). High KLF7 expression correlated with inferior prognostic factors, such as T stage (P=0.022), N stage (P =0.005) and lymphovascular invasion (P=0.009). Furthermore, we observed a strong negative correlation between KLF7 expression and 5-year overall survival and disease-free survival in GC patients (P<0.05). Moreover, our in vitro studies showed a notable decrease in migration in KLF7 knockdown cells. Conclusion: KLF7 has an important role in GC progression, as it inhibits GC cell migration and may serve as a prognostic marker.


2020 ◽  
Vol 21 (10) ◽  
pp. 3522
Author(s):  
Nair Lopes ◽  
Margareta P. Correia ◽  
Rui Henrique ◽  
Carmen Jerónimo

Oesophageal cancer is a life-threatening disease, accounting for high mortality rates. The poor prognosis of this malignancy is mostly due to late diagnosis and lack of effective therapies for advanced disease. Epigenetic alterations may constitute novel and attractive therapeutic targets, owing to their ubiquity in cancer and their reversible nature. Herein, we offer an overview of the most important studies which compared differences in expression of enzymes that mediate epigenetic alterations between oesophageal cancer and normal mucosa, as well as in vitro data addressing the role of these genes/proteins in oesophageal cancer. Furthermore, The Cancer Genome Atlas database was interrogated for the correlation between expression of these epigenetic markers and standard clinicopathological features. We concluded that most epigenetic players studied thus far are overexpressed in tumours compared to normal tissue. Furthermore, functional assays suggest an oncogenic role for most of those enzymes, supporting their potential as therapeutic targets in oesophageal cancer.


2019 ◽  
Vol 39 (9) ◽  
Author(s):  
Claire Lailler ◽  
Christophe Louandre ◽  
Mony Chenda Morisse ◽  
Thomas Lhossein ◽  
Corinne Godin ◽  
...  

Abstract The tumor microenvironment is an important determinant of glioblastoma (GBM) progression and response to treatment. How oncogenic signaling in GBM cells modulates the composition of the tumor microenvironment and its activation is unclear. We aimed to explore the potential local immunoregulatory function of ERK1/2 signaling in GBM. Using proteomic and transcriptomic data (RNA seq) available for GBM tumors from The Cancer Genome Atlas (TCGA), we show that GBM with high levels of phosphorylated ERK1/2 have increased infiltration of tumor-associated macrophages (TAM) with a non-inflammatory M2 polarization. Using three human GBM cell lines in culture, we confirmed the existence of ERK1/2-dependent regulation of the production of the macrophage chemoattractant CCL2/MCP1. In contrast with this positive regulation of TAM recruitment, we found no evidence of a direct effect of ERK1/2 signaling on two other important aspects of TAM regulation by GBM cells: (1) the expression of the immune checkpoint ligands PD-L1 and PD-L2, expressed at high mRNA levels in GBM compared with other solid tumors; (2) the production of the tumor metabolite lactate recently reported to dampen tumor immunity by interacting with the receptor GPR65 present on the surface of TAM. Taken together, our observations suggest that ERK1/2 signaling regulates the recruitment of TAM in the GBM microenvironment. These findings highlight some potentially important particularities of the immune microenvironment in GBM and could provide an explanation for the recent observation that GBM with activated ERK1/2 signaling may respond better to anti-PD1 therapeutics.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3439 ◽  
Author(s):  
Niklas Klümper ◽  
Marthe von Danwitz ◽  
Johannes Stein ◽  
Doris Schmidt ◽  
Anja Schmidt ◽  
...  

Downstream neighbor of Son (DONSON) plays a crucial role in cell cycle progression and in maintaining genomic stability, but its role in prostate cancer (PCa) development and progression is still underinvestigated. Methods: DONSON mRNA expression was analyzed with regard to clinical-pathological parameters and progression using The Cancer Genome Atlas (TCGA) and two publicly available Gene Expression Omnibus (GEO) datasets of PCa. Afterwards, DONSON protein expression was assessed via immunohistochemistry on a comprehensive tissue microarray (TMA). Subsequently, the influence of a DONSON-knockdown induced by the transfection of antisense-oligonucleotides on proliferative capacity and metastatic potential was investigated. DONSON was associated with an aggressive phenotype in the PCa TCGA cohort, two GEO PCa cohorts, and our PCa TMA cohort as DONSON expression was particularly strong in locally advanced, metastasized, and dedifferentiated carcinomas. Thus, DONSON expression was notably upregulated in distant and androgen-deprivation resistant metastases. In vitro, specific DONSON-knockdown significantly reduced the migration capacity in the PCa cell lines PC-3 and LNCaP, which further suggests a tumor-promoting role of DONSON in PCa. In conclusion, the results of our comprehensive expression analyses, as well as the functional data obtained after DONSON-depletion, lead us to the conclusion that DONSON is a promising prognostic biomarker with oncogenic properties in PCa.


Sign in / Sign up

Export Citation Format

Share Document