scholarly journals Model-based and model-free characterization of epidemic outbreaks

Author(s):  
Jonas Dehning ◽  
F. Paul Spitzner ◽  
Matthias C. Linden ◽  
Sebastian B. Mohr ◽  
Joao Pinheiro Neto ◽  
...  

Here we provide detailed background information for our work on Bayesian inference of change-points in the spread of SARS-CoV-2 and the effectiveness of non-pharmaceutical interventions (Dehning et al., Science, 2020). We outline the general background of Bayesian inference and of SIR-like models. We explain the assumptions that underlie model-based estimates of the reproduction number and compare them to the assumptions that underlie model-free estimates, such as used in the Robert-Koch Institute situation reports. We highlight effects that originate from the two estimation approaches, and how they may cause differences in the inferred reproduction number. Furthermore, we explore the challenges that originate from data availability - such as publication delays and inconsistent testing - and explain their impact on the time-course of inferred case numbers. Along with alternative data sources, this allowed us to cross-check and verify our previous results.

Author(s):  
Hang Zhou ◽  
Fan Li ◽  
Michelle Le Blanc ◽  
Jingzhe Pan

The underground high-voltage power transmission cables are high value engineering assets that suffer from multiple deteriorations through-out life cycles. Recent studies identified a new failure mode – the pitting corrosion deterioration on the layer of phosphor bronze reinforcing tape, which protects the oil-filled power transmission cables from oil leakage due to deterioration of the leads heath. Two models estimating the phosphor bronze tape life were established separately in this study. The first model, based on mathematical fitting, is generated using a replacement priority model from the power supply industry. This is considered as an empirical-based model. The second model, based on the corrosion fatigue mechanism, utilizes the information of the pit depth distribution and the concept of pit-to-crack transfer probability. The Bayesian inference approach is the conjunction algorithm to update the existing probability of failure (PoF) model with the newly identified failure modes. Through this algorithm, the integrated PoF model contains a more comprehensive background information while maintaining the empirical knowledge on the engineering assets’ performance.


2017 ◽  
Author(s):  
Vincenzo G. Fiore ◽  
Dimitri Ognibene ◽  
Bryon Adinoff ◽  
Xiaosi Gu

AbstractSubstance use disorders are characterized by a profound intersubject (phenotypic) variability in the expression of addictive symptomatology and propensity to relapse following treatment. However, laboratory investigations have primarily focused on common neural substrates in addiction, and have not yet been able to identify mechanisms that can account for the multifaceted phenotypic behaviors reported in literature. To investigate this knowledge gap theoretically, here we simulated phenotypic variations in addiction symptomology and responses to putative treatments, using both a neural model based on cortico-striatal circuit dynamics, and an algorithmic model of reinforcement learning. These simulations rely on the widely accepted assumption that both the ventral, model-based, goal-directed system and the dorsal, model-free, habitual system are vulnerable to extra-physiologic dopamine reinforcements triggered by drug consumption. We found that endophenotypic differences in the balance between the two circuit or control systems resulted in an inverted U-shape in optimal choice behavior. Specifically, greater unbalance led to a higher likelihood of developing addiction and more severe drug-taking behaviors. Furthermore, endophenotypes with opposite asymmetrical biases among cortico-striatal circuits expressed similar addiction behaviors, but responded differently to simulated treatments, suggesting personalized treatment development could rely on endophenotypic rather than phenotypic differentiations. We propose our simulated results, confirmed across neural and algorithmic levels of analysis, inform on a fundamental and, to date, neglected quantitative method to characterize clinical heterogeneity in addiction.


2021 ◽  
Vol 11 (2) ◽  
pp. 76-86
Author(s):  
Manisha Mandal ◽  
Shyamapada Mandal

Objective: To evaluate the efficiency of unlock-3 and unlock-4 measure related to COVID-19 transmission change points in India, for projecting the infected population, to help in prospective planning of suitable measures related to future interventions and lifting of restrictions so that the economic settings are not damaged beyond repair. Methods: The SIR model and Bayesian approach combined with Monte Carlo Markov algorithms were applied on the Indian COVID-19 daily new infected cases from 1 August 2020 to 30 September 2020. The effectiveness of unlock-3 and unlock-4 measure were quantified as the change in both effective transmission rates and the basic reproduction number (R0). Results: The study demonstrated that the COVID-19 epidemic declined after implementing unlock-4 measure and the identified change-points were consistent with the timelines of announced unlock-3 and unlock-4 measure, on 1 August 2020 and 1 September 2020, respectively. Conclusions: Changes in the transmission rates with 100% reduction as well as the R0 attaining 1 during unlock-3 and unlock-4 indicated that the measures adopted to control and mitigate the COVID-19 epidemic in India were effective in flattening and receding the epidemic curve. Keywords: COVID-19 in India, epidemiological parameters, unlock-3 and unlock-4, SIR model, Bayesian inference, Monte Carlo Markov sampling


2020 ◽  
Vol 43 ◽  
Author(s):  
Peter Dayan

Abstract Bayesian decision theory provides a simple formal elucidation of some of the ways that representation and representational abstraction are involved with, and exploit, both prediction and its rather distant cousin, predictive coding. Both model-free and model-based methods are involved.


2019 ◽  
Author(s):  
Leor M Hackel ◽  
Jeffrey Jordan Berg ◽  
Björn Lindström ◽  
David Amodio

Do habits play a role in our social impressions? To investigate the contribution of habits to the formation of social attitudes, we examined the roles of model-free and model-based reinforcement learning in social interactions—computations linked in past work to habit and planning, respectively. Participants in this study learned about novel individuals in a sequential reinforcement learning paradigm, choosing financial advisors who led them to high- or low-paying stocks. Results indicated that participants relied on both model-based and model-free learning, such that each independently predicted choice during the learning task and self-reported liking in a post-task assessment. Specifically, participants liked advisors who could provide large future rewards as well as advisors who had provided them with large rewards in the past. Moreover, participants varied in their use of model-based and model-free learning strategies, and this individual difference influenced the way in which learning related to self-reported attitudes: among participants who relied more on model-free learning, model-free social learning related more to post-task attitudes. We discuss implications for attitudes, trait impressions, and social behavior, as well as the role of habits in a memory systems model of social cognition.


Author(s):  
Hussain A. Jaber ◽  
Ilyas Çankaya ◽  
Hadeel K. Aljobouri ◽  
Orhan M. Koçak ◽  
Oktay Algin

Background: Cluster analysis is a robust tool for exploring the underlining structures in data and grouping them with similar objects. In the researches of Functional Magnetic Resonance Imaging (fMRI), clustering approaches attempt to classify voxels depending on their time-course signals into a similar hemodynamic response over time. Objective: In this work, a novel unsupervised learning approach is proposed that relies on using Enhanced Neural Gas (ENG) algorithm in fMRI data for comparison with Neural Gas (NG) method, which has yet to be utilized for that aim. The ENG algorithm depends on the network structure of the NG and concentrates on an efficacious prototype-based clustering approach. Methods: The comparison outcomes on real auditory fMRI data show that ENG outperforms the NG and statistical parametric mapping (SPM) methods due to its insensitivity to the ordering of input data sequence, various initializations for selecting a set of neurons, and the existence of extreme values (outliers). The findings also prove its capability to discover the exact and real values of a cluster number effectively. Results: Four validation indices are applied to evaluate the performance of the proposed ENG method with fMRI and compare it with a clustering approach (NG algorithm) and model-based data analysis (SPM). These validation indices include the Jaccard Coefficient (JC), Receiver Operating Characteristic (ROC), Minimum Description Length (MDL) value, and Minimum Square Error (MSE). Conclusion: The ENG technique can tackle all shortcomings of NG application with fMRI data, identify the active area of the human brain effectively, and determine the locations of the cluster center based on the MDL value during the process of network learning.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexa Booras ◽  
Tanner Stevenson ◽  
Connor N. McCormack ◽  
Marie E. Rhoads ◽  
Timothy D. Hanks

AbstractIn order to behave appropriately in a rapidly changing world, individuals must be able to detect when changes occur in that environment. However, at any given moment, there are a multitude of potential changes of behavioral significance that could occur. Here we investigate how knowledge about the space of possible changes affects human change point detection. We used a stochastic auditory change point detection task that allowed model-free and model-based characterization of the decision process people employ. We found that subjects can simultaneously apply distinct timescales of evidence evaluation to the same stream of evidence when there are multiple types of changes possible. Informative cues that specified the nature of the change led to improved accuracy for change point detection through mechanisms involving both the timescales of evidence evaluation and adjustments of decision bounds. These results establish three important capacities of information processing for decision making that any proposed neural mechanism of evidence evaluation must be able to support: the ability to simultaneously employ multiple timescales of evidence evaluation, the ability to rapidly adjust those timescales, and the ability to modify the amount of information required to make a decision in the context of flexible timescales.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lieneke K. Janssen ◽  
Florian P. Mahner ◽  
Florian Schlagenhauf ◽  
Lorenz Deserno ◽  
Annette Horstmann

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


Sign in / Sign up

Export Citation Format

Share Document