scholarly journals Nanoscale membrane curvature sorts lipid phases and alters lipid diffusion

2020 ◽  
Author(s):  
Xinxin Woodward ◽  
Christopher V. Kelly

ABSTRACTCellular homeostasis requires the precise spatial and temporal control of membrane shape and composition. Membrane regions of high curvature, such as endocytic pits and viral buds, contain distinct lipids and proteins. However, the interplay between membrane curvature and local membrane composition is poorly understood at the nanoscale. Here, we employed single-molecule localization microscopy to observe single-lipid diffusion in model bilayers with varying lipid compositions, phase, temperature, and membrane curvature. Engineered membrane buds were observed for the creation of lateral compositional heterogeneity in otherwise homogeneous membranes. Membrane curvature recruited liquid-disordered lipid phases in phase-separated membranes and altered the diffusion of the lipids. Supported lipid bilayers were created over 50-nm radius nanoparticles to engineer nanoscale membrane curvature that mimics the size of naturally occurring endocytic pits and viral buds. The disorder-preferring lipids sorted to the nanoscale curvature at all temperatures, but only when embedded in a membrane capable of sustaining liquid-liquid phase separation at low temperatures. This result suggests that lipid sorting by the membrane curvature was only possible when coupled with lipid phase separation. The curvature affected the local membrane composition most strongly when the curvature was locally surrounded by a liquid-ordered phase typically associated with a stiffer bending modulus. The curvature-induced sorting of lipid phases was quantified by the sorting of disorder-preferring fluorescent lipids, single-lipid diffusion measurements, and simulations that couple the lipid phase separation to the membrane shape. Unlike single-component membranes, lipids in phase-separated membranes demonstrated faster diffusion on curved membranes than the surrounding, flat membrane. These results demonstrate that curvature-induced membrane compositional heterogeneity can be achieved by collective behavior with lipid phase separation when single-molecule properties (i.e., packing parameter) are insufficient. These results support the hypothesis that the coupling of lipid phases and membrane shape may yield lateral membrane composition heterogeneities with functional consequences.STATEMENT OF SIGNIFICANCENanoscopic membrane organization and dynamics are critical for cellular function but challenging to experimentally measure. This work brings together super-resolution optical methods with engineered substrates to reveal the interplay between curvature, composition, phase, and diffusion in model membranes. We report that curvature can induce phase separation in otherwise homogeneous membranes and that the phase-curvature coupling has a direct implication on lipid mobility. In sum, this discovery advances our understanding of the fundamental membrane biophysics that regulate membrane activities such as endocytosis and viral budding.

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Alf Honigmann ◽  
Sina Sadeghi ◽  
Jan Keller ◽  
Stefan W Hell ◽  
Christian Eggeling ◽  
...  

The eukaryotic cell membrane is connected to a dense actin rich cortex. We present FCS and STED experiments showing that dense membrane bound actin networks have severe influence on lipid phase separation. A minimal actin cortex was bound to a supported lipid bilayer via biotinylated lipid streptavidin complexes (pinning sites). In general, actin binding to ternary membranes prevented macroscopic liquid-ordered and liquid-disordered domain formation, even at low temperature. Instead, depending on the type of pinning lipid, an actin correlated multi-domain pattern was observed. FCS measurements revealed hindered diffusion of lipids in the presence of an actin network. To explain our experimental findings, a new simulation model is proposed, in which the membrane composition, the membrane curvature, and the actin pinning sites are all coupled. Our results reveal a mechanism how cells may prevent macroscopic demixing of their membrane components, while at the same time regulate the local membrane composition.


Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 745 ◽  
Author(s):  
Prabuddha Sengupta ◽  
Jennifer Lippincott-Schwartz

Retroviruses selectively incorporate a specific subset of host cell proteins and lipids into their outer membrane when they bud out from the host plasma membrane. This specialized viral membrane composition is critical for both viral survivability and infectivity. Here, we review recent findings from live cell imaging of single virus assembly demonstrating that proteins and lipids sort into the HIV retroviral membrane by a mechanism of lipid-based phase partitioning. The findings showed that multimerizing HIV Gag at the assembly site creates a liquid-ordered lipid phase enriched in cholesterol and sphingolipids. Proteins with affinity for this specialized lipid environment partition into it, resulting in the selective incorporation of proteins into the nascent viral membrane. Building on this and other work in the field, we propose a model describing how HIV Gag induces phase separation of the viral assembly site through a mechanism involving transbilayer coupling of lipid acyl chains and membrane curvature changes. Similar phase-partitioning pathways in response to multimerizing structural proteins likely help sort proteins into the membranes of other budding structures within cells.


1980 ◽  
Vol 58 (10) ◽  
pp. 755-770 ◽  
Author(s):  
Joan M. Boggs

Biological membranes have unique lipid compositions suggesting a specific role for many lipids. Evidence is reviewed concerning the intermolecular forces between glycero- and sphingolipids and cholesterol, the dependence of many of these interactions on the state of ionization of lipids, pH, ionic strength, and divalent cation concentration. The effect of intermolecular interactions between certain lipids on lipid clustering, interaction with cholesterol, on the conformation of proteins, and on transitions to the hexagonal phase is considered. Other forces which cause lipid phase separation or clustering are discussed. It is concluded that lipids are in dynamic equilibrium with their environment and can act as receptors for certain intra- or extracellular stimuli, which they can translate into a response by undergoing changes in fluidity, phase transitions, or phase separation.


Biochemistry ◽  
1977 ◽  
Vol 16 (11) ◽  
pp. 2325-2329 ◽  
Author(s):  
J. M. Boggs ◽  
D. D. Wood ◽  
M. A. Moscarello ◽  
D. Papahadjopoulos

2020 ◽  
Author(s):  
J. K. Chung ◽  
W. Y. C. Huang ◽  
C. B. Carbone ◽  
L. M. Nocka ◽  
A. N. Parikh ◽  
...  

AbstractLipid miscibility phase separation has long been considered to be a central element of cell membrane organization. More recently, protein condensation phase transitions, into three-dimensional droplets or in two-dimensional lattices on membrane surfaces, have emerged as another important organizational principle within cells. Here, we reconstitute the LAT:Grb2:SOS protein condensation on the surface of giant unilamellar vesicles capable of undergoing lipid phase separations. Our results indicate that assembly of the protein condensate on the membrane surface can drive lipid phase separation. This phase transition occurs isothermally and is governed by tyrosine phosphorylation on LAT. Furthermore, we observe that the induced lipid phase separation drives localization of the SOS substrate, K-Ras, into the LAT:Grb2:SOS protein condensate.Statement of SignificanceProtein condensation phase transitions are emerging as an important organizing principles in cells. One such condensate plays a key role in T cell receptor signaling. Immediately after receptor activation, multivalent phosphorylation of the adaptor protein LAT at the plasma membrane leads to networked assembly of a number of signaling proteins into a two-dimensional condensate on the membrane surface. In this study, we demonstrate that LAT condensates in reconstituted vesicles are sufficient to drive lipid phase separation. This lipid reorganization drives another key downstream signaling molecule, Ras, into the LAT condensates. These results show that the LAT condensation phase transition, which is actively controlled by phosphorylation reactions, extends its influence to control lipid phase separation in the underlying membrane.


2019 ◽  
Vol 117 (7) ◽  
pp. 1215-1223 ◽  
Author(s):  
Yang Liu ◽  
Jonathan Barnoud ◽  
Siewert J. Marrink

2013 ◽  
Vol 135 (4) ◽  
pp. 1185-1188 ◽  
Author(s):  
Christine S. Scheve ◽  
Paul A. Gonzales ◽  
Noor Momin ◽  
Jeanne C. Stachowiak

Sign in / Sign up

Export Citation Format

Share Document