scholarly journals Dissecting the role of glutamine in seeding peptide aggregation

2020 ◽  
Author(s):  
Exequiel E. Barrera ◽  
Francesco Zonta ◽  
Sergio Pantano

ABSTRACTPoly glutamine and glutamine-rich peptides play a central role in a plethora of pathological aggregation events. However, biophysical characterization of soluble oligomers —the most toxic species involved in these processes— remains elusive due to their structural heterogeneity and dynamical nature. Here, we exploit the high spatio-temporal resolution of simulations as a computational microscope to characterize the aggregation propensity and morphology of a series of polyglutamine and glutamine-rich peptides. Comparative analysis of ab-initio aggregation pinpointed a double role for glutamines. In the first phase, glutamines mediate seeding by pairing monomeric peptides, which serve as primers for higher-order nucleation. According to the glutamine content, these low molecular-weight oligomers may then proceed to create larger aggregates. Once within the aggregates, buried glutamines continue to play a role in their maturation by optimizing solvent-protected hydrogen bonds networks.TOC / Abstract Figure

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giulia Tedeschi ◽  
Lorenzo Scipioni ◽  
Maria Papanikolaou ◽  
Geoffrey W. Abbott ◽  
Michelle A. Digman

AbstractVoltage-gated potassium (Kv) channels are a family of membrane proteins that facilitate K+ ion diffusion across the plasma membrane, regulating both resting and action potentials. Kv channels comprise four pore-forming α subunits, each with a voltage sensing domain, and they are regulated by interaction with β subunits such as those belonging to the KCNE family. Here we conducted a comprehensive biophysical characterization of stoichiometry and protein diffusion across the plasma membrane of the epithelial KCNQ1-KCNE2 complex, combining total internal reflection fluorescence (TIRF) microscopy and a series of complementary Fluorescence Fluctuation Spectroscopy (FFS) techniques. Using this approach, we found that KCNQ1-KCNE2 has a predominant 4:4 stoichiometry, while non-bound KCNE2 subunits are mostly present as dimers in the plasma membrane. At the same time, we identified unique spatio-temporal diffusion modalities and nano-environment organization for each channel subunit. These findings improve our understanding of KCNQ1-KCNE2 channel function and suggest strategies for elucidating the subunit stoichiometry and forces directing localization and diffusion of ion channel complexes in general.


Sign in / Sign up

Export Citation Format

Share Document