scholarly journals Comparing global and regional maps of intactness in the boreal region of North America: Implications for conservation planning in one of the world’s remaining wilderness areas

2020 ◽  
Author(s):  
Pierre Vernier ◽  
Shawn Leroux ◽  
Steve Cumming ◽  
Kim Lisgo ◽  
Alberto Suarez Esteban ◽  
...  

AbstractThough North America’s boreal forest contains some of the largest remaining intact and wild ecosystems in the world, human activities are systematically reducing its extent. Consequently, forest intactness and human influence maps are increasingly used for monitoring and conservation planning in the boreal region. We compare eight forest intactness and human impact maps to provide a multi-model assessment of intactness in the boreal region. All maps are global in extent except for Global Forest Watch Canada’s Human Access (2000) and Intact Forest Landscapes (2000, 2013) maps, although some global maps are restricted to areas that were at least 20% treed. As a function of each map’s spatial coverage in North America, the area identified as intact ranged from 55% to 79% in Canada and from 32% to 96% in Alaska. Likewise, the similarity between pairs of datasets in the Canadian boreal ranged from 0.58 to 0.86 on a scale of 0-1. In total, 45% of the region was identified as intact by the seven most recent datasets. There was also variation in the ability of the datasets to account for anthropogenic disturbances that are increasingly common in the boreal region, such as those associated with resource extraction. In comparison to a recently developed high resolution regional disturbance dataset, the four human influence datasets (Human Footprint, Global Human Modification, Large Intact Areas, and Anthropogenic Biomes), in particular, omitted 59-85% of all linear disturbances and 54-89% of all polygonal disturbances. In contrast, the global IFL, Canadian IFL, and Human Access maps omitted 2-7% of linear disturbances and 0.1-5% of polygonal disturbances. Several differences in map characteristics, including input datasets and methods used to develop the maps may help explain these differences. Ultimately, the decision on which dataset to use will depend on the objectives of each specific conservation planning project, but we recommend using datasets that 1) incorporate regional anthropogenic activities, 2) are updated regularly, 3) provide detailed information of the methods and input data used, and 4) can be replicated and adapted for local use. This is especially important in landscapes that are undergoing rapid change due to development, such as the boreal forest of North America.

2021 ◽  
Vol 3 ◽  
Author(s):  
Akhilesh S. Nair ◽  
Nitish Kumar ◽  
J. Indu ◽  
B. Vivek

Lakes are an essential component of biogeochemical processes, and variations in lake level are regarded as indicators of climate change. For more than a decade, satellite altimetry has successfully monitored variation in water levels over inland seas, lakes, rivers, and wetlands. Through altimetry, the surface water levels are measured at varying temporal scales depending on the orbit cycle of the satellite. The futuristic mission of Surface Water and Ocean Topography (SWOT) scheduled to be launched in year 2022 shall offer the spatial coverage and resolution suitable for water level estimation and volume calculation in small water bodies like lakes worldwide. With a radar interferometer in Ka-band, SWOT proposes to provide two-dimensional maps of water heights 21 days repeat orbit configuration. Cycle average SWOT datasets for land will be developed with higher temporal resolution, with temporal resolution varying geographically. This work assesses the potential of SWOT for monitoring water volumes over a case study lake by analyzing SWOT like synthetic data produced using the SWOT simulator developed by the Centre National d'Etudes Spatiales (CNES). With SWOT relying on a novel technology, the initial 90 days of this mission after launch shall focus on an extensive calibration and validation. Firsthand results of SWOT-simulated water levels and volumes are presented over a case study region in the tropical band, namely, Pookode Lake, in the ecologically fragile district of Wayanad, Kerala, India. It is the second-largest freshwater lake in Kerala that is being affected by anthropogenic activities, causing huge depletion in lake water storage in the last four decades. Our analysis indicated that the lake region is subjected to a rise in temperature of 0.018°C per year. We further assess the potential of remote sensing and SWOT data to monitor water storage of Pookode Lake, which is undergoing a rapid change. Results show that the proxy water surface elevations have immense potential in scientific studies pertaining to lake monitoring across the world. Overall, the study shows the potential of SWOT for monitoring the variability of water levels and volumes in this region.


2013 ◽  
Vol 167 ◽  
pp. 371-379 ◽  
Author(s):  
Ryan P. Powers ◽  
Nicholas C. Coops ◽  
Trisalyn Nelson ◽  
Michael A. Wulder ◽  
C. Ronnie Drever

2021 ◽  
Author(s):  
Cameron de Wet ◽  
Jessica Oster ◽  
Daniel Ibarra ◽  
Bryce Belanger

<p>The Last Interglacial (LIG) period (~129,000–116,000 years BP) and the mid-Holocene (MH) (~6,000 years BP) are the two most recent intervals with temperatures comparable to low emissions scenarios for the end of the 21<sup>st</sup> century. During the LIG and the MH differences in the seasonal and latitudinal distribution of insolation led to enhanced northern hemisphere high-latitude warmth relative to the pre-industrial, despite similar greenhouse gas concentrations, marking these intervals as potentially useful analogs for future change in regions like North America. Further, the inclusion of both LIG (127 ka) and MH (6 ka) experiments in the CMIP6-PMIP4 effort provides an opportunity to better understand the regional hydroclimate responses to radiative forcing during these two intervals. The dense coverage of paleoclimate proxy records for North America during the MH (N=260 sites) reveals a pattern of relative aridity in the Pacific Northwest and Western Canada and wetness in the southern Great Basin and Mexico. However, the seasonality and driving mechanisms of rainfall patterns across the continent remain poorly understood. Our understanding of terrestrial hydroclimate in North America during the LIG is more limited (N=39 sites), largely because the LIG is beyond the range of radiocarbon dating.</p><p>Here we present spatial comparisons between output from 14 PMIP4 global circulation models and LIG and MH networks of moisture-sensitive proxies compiled for the North American continent. We utilize two statistical measures of agreement – weighted Cohen’s Kappa and Gwet’s AC2 – to assess the degree of categorical agreement between moisture patterns produced by the models and the proxy networks for each time-slice. PMIP4 models produce variable precipitation anomalies relative to the pre-industrial for both the LIG and MH experiments, often disagreeing on both the sign and magnitude of precipitation changes across much of North America. The models showing the best agreement with the proxy network are similar but not identical for the two measures, with Gwet’s AC2 values tending to be larger than Cohen’s Kappa values for all models. This pattern is enhanced for the much larger MH proxy network and is likely related to the fact that Gwet’s AC2 is a more predictable statistic in the presence of high agreement. Overall agreement is lower for the mid-Holocene than for the LIG, reflecting smaller MH rainfall anomalies in the models. The models with the highest agreement scores during the LIG produce aridity in the Rocky Mountains and Pacific Northwest and wetness in Alaska, the Yukon, the Great Basin, and parts of the Mid-West and Eastern US, although spatial coverage of the proxies in these latter two regions is poor. The models with the highest agreement score for the mid-Holocene tend to produce aridity across Canada and the northern US with dry conditions extending down the US Pacific coast and increased wetness in the American Southeast and across the North American Monsoon region. Our analyses help elucidate the driving mechanisms of rainfall patterns during past warm states and can inform which models may be the most useful for predictions of near-future hydroclimate change across North America.</p>


Author(s):  
Marilyn W. Walker ◽  
Mary E. Edwards

Historically the boreal forest has experienced major changes, and it remains a highly dynamic biome today. During cold phases of Quaternary climate cycles, forests were virtually absent from Alaska, and since the postglacial re-establishment of forests ca 13,000 years ago, there have been periods of both relative stability and rapid change (Chapter 5). Today, the Alaskan boreal forest appears to be on the brink of further significant change in composition and function triggered by recent changes that include climatic warming (Chapter 4). In this chapter, we summarize the major conclusions from earlier chapters as a basis for anticipating future trends. Alaska warmed rapidly at the end of the last glacial period, ca 15,000–13,000 years ago. Broadly speaking, climate was warmest and driest in the late glacial and early Holocene; subsequently, moisture increased, and the climate gradually cooled. These changes were associated with shifts in vegetation dominance from deciduous woodland and shrubland to white spruce and then to black spruce. The establishment of stands of fire-prone black spruce over large areas of the boreal forest 5000–6000 years ago is linked to an apparent increase in fire frequency, despite the climatic trend to cooler and moister conditions. This suggests that long-term features of the Holocene fire regime are more strongly driven by vegetation characteristics than directly by climate (Chapter 5). White spruce forests show decreased growth in response to recent warming, because warming-induced drought stress is more limiting to growth than is temperature per se (Chapters 5, 11). If these environmental controls persist, projections suggest that continued climate warming will lead to zero net annual growth and perhaps the movement of white spruce to cooler upland forest sites before the end of the twenty-first century. At the southern limit of the Alaskan boreal forest, spruce bark beetle outbreaks have decimated extensive areas of spruce forest, because warmer temperatures have reduced tree resistance to bark beetles and shortened the life cycle of the beetle from two years to one, shifting the tree-beetle interaction in favor of the insect (Chapter 9).


Author(s):  
Glenn Patrick Juday ◽  
Valerie Barber

The two most important life functions that organisms carry out to persist in the environment are reproduction and growth. In this chapter we examine the role of climate and climate variability as controlling factors in the growth of one of the most important and productive of the North American boreal forest tree species, white spruce (Picea glauca [Moench] Voss). Because the relationship between climate and tree growth is so close, tree-ring properties have been used successfully for many years as a proxy to reconstruct past climates. Our recent reconstruction of nineteenth- century summer temperatures at Fairbanks based on white spruce tree-ring characteristics (Barber et al. in press) reveals a fundamental pattern of quasi-decadal climate variability. The values in this reconstruction of nineteenth-century Fairbanks summer temperatures are surprisingly warm compared to values in much of the published paleoclimatic literature for boreal North America. In this chapter we compare our temperature reconstructions with ring-width records in northern and south-central Alaska to see whether tree-growth signals in the nineteenth century in those regions are consistent with tree-ring characteristics in and near Bonanza Creek (BNZ) LTER (25 km southwest of Fairbanks) that suggest warm temperatures during the mid-nineteenth century. We also present a conceptual model of key limiting events in white spruce reproduction and compare it to a 39-year record of seed fall at BNZ. Finally, we derive a radial growth pattern index from white spruce at nine stands across Interior Alaska that matches recent major seed crop events in the BNZ monitoring period, and we identify dates after 1800 when major seed crops of white spruce, which are infrequent, may have been produced. The boreal region is characterized by a broad zone of forest with a continuous distribution across Eurasia and North America, amounting to about 17% of the earth’s land surface area (Bonan et al. 1992). The boreal region is often conceived of as a zone of relatively homogenous climate, but in fact a surprising diversity of climates are present. During the long days of summer, continental interior locations under persistent high-pressure systems experience hot weather that can promote extensive forest fires frequently exceeding 100 kilohectares (K ha). Summer daily maximum temperatures are cooled to a considerable degree in maritime portions of the boreal region affected by air masses that originate over the North Atlantic, North Pacific, or Arctic Oceans.


Author(s):  
Jane A. Fitzgerald ◽  
Wayne E. Thogmartin ◽  
Randy Dettmers ◽  
Tim Jones ◽  
Christopher Rustay ◽  
...  

2007 ◽  
Vol 37 (6) ◽  
pp. 1012-1023 ◽  
Author(s):  
David F. Greene ◽  
S. Ellen Macdonald ◽  
Sybille Haeussler ◽  
Susy Domenicano ◽  
Josée Noël ◽  
...  

We compared prefire and postfire organic-layer depths in boreal forest types (14 fires) across Canada, and examined tree recruitment as a function of depth. There was extensive within-stand variation in depth, much of it due to clustering of thinner organic layers around boles. There were no significant differences in postfire organic-layer depth among sites with different prefire forest species composition, but sites in the eastern boreal region had thicker postfire organic layers than those in the western boreal region. Mean organic-layer depth was much greater in intact stands than after fires; overall, fire reduced organic-layer depth by 60%, largely because of increases in the area of thin (<3 cm) organic layers (1% in intact stands vs. 40% in postfire stands). There was more variation in organic-layer depth within postfire than within prefire stands; notably, some areas in postfire stands were deeply combusted, while adjacent parts were only lightly combusted. We speculate that the diminished role of energy loss to latent heat around tree boles increased organic-layer consumption around tree boles. Seedlings were clustered around burned tree bases, where organic layers were thinner, and the dependence of a species on thin organic layers was an inverse function of seed size.


Sign in / Sign up

Export Citation Format

Share Document