scholarly journals A Large-Scale Structural and Functional Connectome of Social Mentalizing

2020 ◽  
Author(s):  
Yin Wang ◽  
Athanasia Metoki ◽  
Yunman Xia ◽  
Yinyin Zang ◽  
Yong He ◽  
...  

AbstractHumans have a remarkable ability to infer the mind of others. This mentalizing skill relies on a distributed network of brain regions but how these regions connect and interact is not well understood. Here we leveraged large-scale multimodal neuroimaging data to elucidate the connectome-level organization and brain-wide mechanisms of mentalizing processing. Key features of the mentalizing connectome have been delineated in exquisite detail and its relationship with the default mode network has been extensively scrutinized. Our study demonstrates that mentalizing processing unfolds across functionally heterogeneous regions with highly structured fiber tracts and unique hierarchical functional architecture, which make it distinguishable from the default mode network and other social brain networks.

2013 ◽  
Vol 44 (10) ◽  
pp. 2041-2051 ◽  
Author(s):  
F. Sambataro ◽  
N. D. Wolf ◽  
M. Pennuto ◽  
N. Vasic ◽  
R. C. Wolf

BackgroundMajor depressive disorder (MDD) is characterized by alterations in brain function that are identifiable also during the brain's ‘resting state’. One functional network that is disrupted in this disorder is the default mode network (DMN), a set of large-scale connected brain regions that oscillate with low-frequency fluctuations and are more active during rest relative to a goal-directed task. Recent studies support the idea that the DMN is not a unitary system, but rather is composed of smaller and distinct functional subsystems that interact with each other. The functional relevance of these subsystems in depression, however, is unclear.MethodHere, we investigated the functional connectivity of distinct DMN subsystems and their interplay in depression using resting-state functional magnetic resonance imaging.ResultsWe show that patients with MDD exhibit increased within-network connectivity in posterior, ventral and core DMN subsystems along with reduced interplay from the anterior to the ventral DMN subsystems.ConclusionsThese data suggest that MDD is characterized by alterations of subsystems within the DMN as well as of their interactions. Our findings highlight a critical role of DMN circuitry in the pathophysiology of MDD, thus suggesting these subsystems as potential therapeutic targets.


2014 ◽  
Vol 205 (5) ◽  
pp. 376-382 ◽  
Author(s):  
Jan C. Beucke ◽  
Jorge Sepulcre ◽  
Mark C. Eldaief ◽  
Miriam Sebold ◽  
Norbert Kathmann ◽  
...  

BackgroundAlthough neurobiological models of obsessive–compulsive disorder (OCD) traditionally emphasise the central role of corticostriatal brain regions, studies of default mode network integrity have garnered increasing interest, but have produced conflicting results.AimsTo resolve these discrepant findings by examining the integrity of default mode network subsystems in OCD.MethodComparison of seed-based resting-state functional connectivity of 11 default mode network components between 46 patients with OCD and 46 controls using functional magnetic resonance imaging.ResultsSignificantly reduced connectivity within the dorsal medial prefrontal cortex self subsystem was identified in the OCD group, and remained significant after controlling for medication status and life-time history of affective disorders. Further, greater connectivity between the self subsystem and salience and attention networks was observed.ConclusionsResults indicate that people with OCD show abnormalities in a neural system previously associated with self-referential processing in healthy individuals, and suggest the need for examination of dynamic interactions between this default mode network subsystem and other large-scale networks in this disorder.


2021 ◽  
Vol 11 (3) ◽  
pp. 374
Author(s):  
Tomoyo Morita ◽  
Minoru Asada ◽  
Eiichi Naito

Self-consciousness is a personality trait associated with an individual’s concern regarding observable (public) and unobservable (private) aspects of self. Prompted by previous functional magnetic resonance imaging (MRI) studies, we examined possible gray-matter expansions in emotion-related and default mode networks in individuals with higher public or private self-consciousness. One hundred healthy young adults answered the Japanese version of the Self-Consciousness Scale (SCS) questionnaire and underwent structural MRI. A voxel-based morphometry analysis revealed that individuals scoring higher on the public SCS showed expansions of gray matter in the emotion-related regions of the cingulate and insular cortices and in the default mode network of the precuneus and medial prefrontal cortex. In addition, these gray-matter expansions were particularly related to the trait of “concern about being evaluated by others”, which was one of the subfactors constituting public self-consciousness. Conversely, no relationship was observed between gray-matter volume in any brain regions and the private SCS scores. This is the first study showing that the personal trait of concern regarding public aspects of the self may cause long-term substantial structural changes in social brain networks.


2010 ◽  
Vol 21 (1) ◽  
pp. 233-244 ◽  
Author(s):  
A. Pfefferbaum ◽  
S. Chanraud ◽  
A.-L. Pitel ◽  
E. Muller-Oehring ◽  
A. Shankaranarayanan ◽  
...  

2017 ◽  
Vol 05 (01) ◽  
Author(s):  
Tzipi Horowitz Kraus ◽  
Rola Farah ◽  
Ardag Hajinazarian ◽  
Kenneth Eaton ◽  
Akila Rajagopal ◽  
...  

2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S10-S10
Author(s):  
Margaret Niznikiewicz ◽  
Kana Okano ◽  
Clemens Bauer ◽  
Paul Nestor ◽  
Elizabetta Del Re ◽  
...  

Abstract Background Auditory hallucinations (AH) are one of the core symptoms of schizophrenia (SZ) and constitute a significant source of suffering and disability. One third of SZ patients experience pharmacology-resistant AH, so an alternative/complementary treatment strategy is needed to alleviate this debilitating condition. In this study, real-time functional Magnetic Resonance Imaging neurofeedback (rt-fMRI NFB), a non-invasive technique, was used to help 10 SZ patients modulate their brain activity in key brain regions belonging to the network involved in the experience of auditory hallucinations. In two experiments we selected two different brain targets. 1. the superior temporal gyrus (STG) and 2. default mode network (DMN)-central executive network (CEN) connectivity. STG is a key area in the neurophysiology of AH. Hyperactivation of the default mode network (DMN) and of the superior temporal gyrus (STG) in SZ has been shown in imaging studies. Furthermore, several studies point to reduced anticorrelation between the DMN and the central executive network (CEN). Finally, DMN hyperconnectivity has been associated with positive symptoms such as AHs while reduced DMN anticorrelations have been associated with cognitive impairment. Methods In the STG-focused NFB experiment, subjects were trained to upregulate the STG activity while listening to their own voice recording and downregulate it while ignoring a stranger’s voice recording in the course of 21 min NFB session. Visual feedback was provided to subjects at the end of each run from their own STG activity in the form of a thermometer. AH were assessed with auditory hallucination scale pre-NFB and within a week after the NFB session. The DMN-CEN focused NFB experiment was conducted about 1 month later to minimize the carry over effects from the STG-focused NFB and was designed to help SZ patients modulate their DMN and CEN networks. DMN and CEN networks were defined individually for each subject. The goal of the task was to increase CEN-DMN anti-correlations. To achieve that patients were provided with meditation strategies to guide their performance. Feedback was provided in the form of a ball that traveled up if the modulation of DMN-CEN connectivity was successful and traveled down if it was not successful. AH measures were taken before the NFB session and within a week after the session. Results In the STG-focused NFB task, significant STG activation reduction was found in the comparison of pre- relative to post-NFB in the condition of ignoring another person’s voice (p<0.05), FWE-TFCE corrected. AH were also significantly reduced (p<0.01). Importantly, significant correlation was found between reductions in the STG activation and AH reductions (r=.83). In the DMN-CEN focused NFB task, significant increase in the anti-correlations between medial prefrontal cortex (mPFC) and dorsolateral prefrontal cortex (DLPFC) (p<0.05) was observed as well as significant reduction in the mPFC-PCC connectivity (p <0.05), in the pre-post NFB comparisons. AH were significantly reduced in post- relative to pre-NFB comparison (p<0.02). Finally, there was a significant correlation between individual scores in mPFC-STG connectivity and AH reductions. Discussion These the two experiments suggest that targeting both the STG BOLD activation and DMN-CEN connectivity in NFB tasks aimed at AH reduction result both in brain changes and in AH reductions. Together, these results provide strong preliminary support for the NFB use as a means to impact brain function leading to reductions in AH in SZ. Importantly, these results suggest that AH result from brain abnormalities in a network of brain regions and that targeting a brain region belonging to this network will lead to AH symptom reduction.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Jonghan Shin ◽  
Vladimir Kepe ◽  
Gary W. Small ◽  
Michael E. Phelps ◽  
Jorge R. Barrio

The spatial correlations between the brain's default mode network (DMN) and the brain regions known to develop pathophysiology in Alzheimer's disease (AD) have recently attracted much attention. In this paper, we compare results of different functional and structural imaging modalities, including MRI and PET, and highlight different patterns of anomalies observed within the DMN. Multitracer PET imaging in subjects with and without dementia has demonstrated that [C-11]PIB- and [F-18]FDDNP-binding patterns in patients with AD overlap within nodes of the brain's default network including the prefrontal, lateral parietal, lateral temporal, and posterior cingulate cortices, with the exception of the medial temporal cortex (especially, the hippocampus) where significant discrepancy between increased [F-18]FDDNP binding and negligible [C-11]PIB-binding was observed. [F-18]FDDNP binding in the medial temporal cortex—a key constituent of the DMN—coincides with both the presence of amyloid and tau pathology, and also with cortical areas with maximal atrophy as demonstrated by T1-weighted MR imaging of AD patients.


2012 ◽  
Vol 109 (38) ◽  
pp. 15514-15519 ◽  
Author(s):  
Brett L. Foster ◽  
Mohammad Dastjerdi ◽  
Josef Parvizi

Our understanding of the human default mode network derives primarily from neuroimaging data but its electrophysiological correlates remain largely unexplored. To address this limitation, we recorded intracranially from the human posteromedial cortex (PMC), a core structure of the default mode network, during various conditions of internally directed (e.g., autobiographical memory) as opposed to externally directed focus (e.g., arithmetic calculation). We observed late-onset (>400 ms) increases in broad high γ-power (70–180 Hz) within PMC subregions during memory retrieval. High γ-power was significantly reduced or absent when subjects retrieved self-referential semantic memories or responded to self-judgment statements, respectively. Conversely, a significant deactivation of high γ-power was observed during arithmetic calculation, the duration of which correlated with reaction time at the signal-trial level. Strikingly, at each recording site, the magnitude of activation during episodic autobiographical memory retrieval predicted the degree of suppression during arithmetic calculation. These findings provide important anatomical and temporal details—at the neural population level—of PMC engagement during autobiographical memory retrieval and address how the same populations are actively suppressed during tasks, such as numerical processing, which require externally directed attention.


Sign in / Sign up

Export Citation Format

Share Document