scholarly journals Legionella pneumophila’s Tsp is important for surviving thermal stress in water and inside amoeba

2020 ◽  
Author(s):  
Joseph Saoud ◽  
Thangadurai Mani ◽  
Sébastien P. Faucher

ABSTRACTLegionella pneumophila (Lp) is an inhabitant of natural and man-made water systems where it replicates within amoebae and ciliates and survives within biofilms. When Lp-contaminated aerosols are breathed in, Lp will enter the lungs and infect human alveolar macrophages, causing a severe pneumonia known as Legionnaires Disease. Lp is often found in hot water distribution systems (HWDS), which are linked to nosocomial outbreaks. Heat treatment is used to disinfect HWDS and reduce the concentration of Lp. However, Lp is often able to recolonize these water systems, indicating an efficient heat-shock response. Tail-specific proteases (Tsp) are typically periplasmic proteases implicated in degrading aberrant proteins in the periplasm and important for surviving thermal stress. In this paper, we show that Tsp, encoded by the lpg0499 gene in Lp Philadelphia-1, is important for surviving thermal stress in water and for optimal infection of amoeba when a shift in temperature occurs during intracellular growth. Tsp is expressed in the post-exponential phase but repressed in the exponential phase. The cis-encoded small regulatory RNA Lpr17 shows opposite expression, suggesting that it represses translation of tsp. In addition, tsp is regulated by CpxR, a major regulator in Lp, in a Lpr17-independent manner. Deletion of CpxR also reduced the ability of Lp to survive heat shock. In conclusion, this study shows that Tsp is an important factor for the survival and growth of Lp in water systems.IMPORTANCELegionella pneumophila (Lp) is a major cause of nosocomial and community-acquired pneumonia. Lp is found in water systems including hot water distribution systems. Heat treatment is a method of disinfection often used to limit Lp’s presence in such systems; however, the benefit is usually short term as Lp is able to quickly recolonize these systems. Presumably, Lp respond efficiently to thermal stress, but so far not much is known about the genes involved. In this paper, we show that the Tail-specific protease (Tsp) and the two-component system CpxRA are required for resistance to thermal stress, when Lp is free in water and when it is inside host cells. Our study identifies critical systems for the survival of Lp in its natural environment under thermal stress.

2021 ◽  
Vol 87 (9) ◽  
Author(s):  
Joseph Saoud ◽  
Thangadurai Mani ◽  
Sébastien P. Faucher

ABSTRACT Legionella pneumophila (Lp) is an inhabitant of natural and human-made water systems, where it replicates within amoebae and ciliates and survives within biofilms. When Lp-contaminated aerosols are breathed in, Lp can enter the lungs and may infect human alveolar macrophages, causing severe pneumonia known as Legionnaires’ disease. Lp is often found in hot water distribution systems (HWDS), which are linked to nosocomial outbreaks. Heat treatment is used to disinfect HWDS and reduce the concentration of Lp. However, Lp is often able to recolonize these water systems, indicating an efficient heat shock response. Tail-specific proteases (Tsp) are typically periplasmic proteases implicated in degrading aberrant proteins in the periplasm and important for surviving thermal stress. In Lp Philadelphia-1, Tsp is encoded by the lpg0499 gene. In this paper, we show that Tsp is important for surviving thermal stress in water and for optimal infection of amoeba when a shift in temperature occurs during intracellular growth. We also demonstrate that Tsp is expressed in the postexponential phase but repressed in the exponential phase and that the cis-encoded small regulatory RNA Lpr17 shows the opposite expression, suggesting that it represses translation of tsp. In addition, our results show that tsp is regulated by CpxR, a major regulator in Lp, in an Lpr17-independent manner. Deletion of CpxR also reduced the ability of Lp to survive heat shock. In conclusion, our study shows that Tsp is likely an important factor for the survival and growth of Lp in water systems. IMPORTANCE Lp is a major cause of nosocomial and community-acquired pneumonia. Lp is found in water systems, including hot water distribution systems. Heat treatment is a method of disinfection often used to limit the presence of Lp in such systems; however, the benefit is usually short term, as Lp is able to quickly recolonize these systems. Presumably, Lp responds efficiently to thermal stress, but so far, not much is known about the genes involved. In this paper, we show that the Tsp and the two-component system CpxRA are required for resistance to thermal stress when Lp is free in water and when it is inside host cells. Our study identifies critical systems for the survival of Lp in its natural environment under thermal stress.


Author(s):  
Luna Girolamini ◽  
Silvano Salaris ◽  
Jessica Lizzadro ◽  
Marta Mazzotta ◽  
Maria Rosaria Pascale ◽  
...  

In this study, we aimed to associate the molecular typing of Legionella isolates with a culture technique during routine Legionella hospital environmental surveillance in hot water distribution systems (HWDSs) to develop a risk map able to be used to prevent nosocomial infections and formulate appropriate preventive measures. Hot water samples were cultured according to ISO 11731:2017. The isolates were serotyped using an agglutination test and genotyped by sequence-based typing (SBT) for Legionella pneumophila or macrophage infectivity potentiator (mip) gene sequencing for non-pneumophila Legionella species. The isolates’ relationship was phylogenetically analyzed. The Legionella distribution and level of contamination were studied in relation to temperature and disinfectant residues. The culture technique detected 62.21% of Legionella positive samples, characterized by L. pneumophila serogroup 1, Legionella non-pneumophila, or both simultaneously. The SBT assigned two sequence types (STs): ST1, the most prevalent in Italy, and ST104, which had never been isolated before. The mip gene sequencing detected L. anisa and L. rubrilucens. The phylogenetic analysis showed distinct clusters for each species. The distribution of Legionella isolates showed significant differences between buildings, with a negative correlation between the measured level of contamination, disinfectant, and temperature. The Legionella molecular approach introduced in HWDSs environmental surveillance permits (i) a risk map to be outlined that can help formulate appropriate disinfection strategies and (ii) rapid epidemiological investigations to quickly identify the source of Legionella infections.


2015 ◽  
Vol 71 ◽  
pp. 244-256 ◽  
Author(s):  
Emilie Bédard ◽  
Stéphanie Fey ◽  
Dominique Charron ◽  
Cindy Lalancette ◽  
Philippe Cantin ◽  
...  

1994 ◽  
Vol 40 (12) ◽  
pp. 993-999 ◽  
Author(s):  
Outi M. Zacheus ◽  
Pertti J. Martikainen

The occurrence of legionellae in the hot water distribution systems of 67 buildings located in different parts of Finland was studied. Most of the buildings were apartment buildings. They had different hot water temperatures, and some received their cold potable water from surface water plants and some from ground water plants. Hot water samples were taken from taps, showers, and water mains just before and after the heat exchanger. Legionella pneumophila was isolated from 30% of the distribution systems. In the legionella-positive samples the legionella concentration varied from < 50 to 3.2 × 105 colony-forming units (cfu)/L (mean 2.7 × 103 cfu/L). The highest concentration of legionellae was found in the shower water. Legionellae appeared more often and with higher concentrations in hot water systems using cold water processed in surface water plants than in hot water systems associated with ground water plants. A high organic matter content in surface waters might favor the occurrence of legionellae and also the growth of other heterotrophic microbes. Mean water temperature just after heating was slightly higher in the legionella-negative systems than in the legionella-positive systems (53.5 vs. 51.5 °C).Key words: Legionella, organic carbon, hot water distribution system, water temperature.


2019 ◽  
Vol 73 ◽  
pp. 47-52
Author(s):  
Iwona Gładysz ◽  
Maria Kozioł-Montewka ◽  
Agnieszka Sikora ◽  
Małgorzata Wójtowicz-Bobin ◽  
Jan Karczewski

Background: Microbiological threat from Legionella spp. is associated with the current widespread use of air-condition systems and frequent colonization of hot water distribution systems in public facilities (hospitals, hotels, nursing homes). This poses a particularly high risk in hospitalized patients, as many of them are immunocompromised. More than 50 species and 72 serogroups of Legionella spp. have been described thus far, including more than 20 species being pathogenic to humans. Material/Methods: Microbiological threat posed by Legionella spp. was assessed based on a retrospective analysis of microbiological quality of water from hot water distribution systems in Polish hospitals, determined in 2009-2013 at certified laboratories of the Sanitary-Epidemiological Surveillance. The results were kindly provided by the hospitals’ administration upon request, for which the authors would like to express their deepest gratitude. The study material included samples of hot water from internal distribution systems in 379 Polish hospitals, collected by the State Sanitary Inspectorate. Results: Based on the results of microbiological analyses, we were able to estimate Legionella spp. colonization rates in hospital water distribution systems and to assess the activities undertaken by the State Sanitary Inspectorate to reduce excessive bacterial counts in this reservoir. Microbiological analyses conducted in 2009-2013, i.e. after implementing a statutory obligation to monitor Legionella spp. in hospital hot water distribution systems, showed elevated bacterial counts in 3.92% to 12.7% of the samples. These findings justify further microbiological monitoring of hospital water distribution systems. Discussion: The prevalence of the most pathogenic serotype SG1 in hot water distribution systems of Polish hospitals is relatively low compared to other European countries. To maintain this favorable status, hospital water systems should be monitored not only for the presence of Legionella pneumophila, but also for the prevalence of serogroup 1 L. pneumophila.


2010 ◽  
Vol 3 (2) ◽  
pp. 91-99 ◽  
Author(s):  
P. Deines ◽  
R. Sekar ◽  
H. S. Jensen ◽  
S. Tait ◽  
J. B. Boxall ◽  
...  

Abstract. Microbiology in Urban Water Systems (MUWS) is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems and sewer networks are both large, highly interconnected, dynamic, subject to time and varying inputs and demands, and difficult to control. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance within urban water infrastructure systems is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we ultimately aim to link microbial community abundance, diversity and function to physical and engineering variables so that novel insights into the performance and management of both water distribution systems and sewer networks can be explored. By presenting the details and principals behind the molecular microbiological techniques that we use, this paper demonstrates the potential of an integrated approach to better understand how urban water system function, and so meet future challenges.


1987 ◽  
Vol 8 (9) ◽  
pp. 357-363 ◽  
Author(s):  
Richard M. Vickers ◽  
Victor L. Yu ◽  
S. Sue Hanna ◽  
Paul Muraca ◽  
Warren Diven ◽  
...  

AbstractWe conducted a prospective environmental study for Legionella pneumophila in 15 hospitals in Pennsylvania. Hot water tanks, cold water sites, faucets, and show-erheads were surveyed four times over a one-year period. Sixty percent (9/15) of hospitals surveyed were contaminated with L pneumophila. Although contamination could not be linked to a specific municipal water supplier, most of the contaminated supplies came from rivers. Parameters found to be significantly associated with contamination included elevated hot water temperature, vertical configuration of the hot water tank, older tanks, and elevated calcium and magnesium concentrations of the water (P < 0.05). This study suggests that L pneumophila contamination could be predicted based on design of the distribution system, as well as physicochemical characteristics of the water.


Pathogens ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 286 ◽  
Author(s):  
Muhammad Atif Nisar ◽  
Kirstin E. Ross ◽  
Melissa H. Brown ◽  
Richard Bentham ◽  
Harriet Whiley

Legionella pneumophila is an opportunistic waterborne pathogen of public health concern. It is the causative agent of Legionnaires’ disease (LD) and Pontiac fever and is ubiquitous in manufactured water systems, where protozoan hosts and complex microbial communities provide protection from disinfection procedures. This review collates the literature describing interactions between L. pneumophila and protozoan hosts in hospital and municipal potable water distribution systems. The effectiveness of currently available water disinfection protocols to control L. pneumophila and its protozoan hosts is explored. The studies identified in this systematic literature review demonstrated the failure of common disinfection procedures to achieve long term elimination of L. pneumophila and protozoan hosts from potable water. It has been demonstrated that protozoan hosts facilitate the intracellular replication and packaging of viable L. pneumophila in infectious vesicles; whereas, cyst-forming protozoans provide protection from prolonged environmental stress. Disinfection procedures and protozoan hosts also facilitate biogenesis of viable but non-culturable (VBNC) L. pneumophila which have been shown to be highly resistant to many water disinfection protocols. In conclusion, a better understanding of L. pneumophila-protozoan interactions and the structure of complex microbial biofilms is required for the improved management of L. pneumophila and the prevention of LD.


1988 ◽  
Vol 20 (11-12) ◽  
pp. 153-159 ◽  
Author(s):  
William D. Rosenzweig ◽  
Wesley O. Pipes

In recent years various types of imperfect fungi have been isolated from water systems. Fungal spores and mycelia can be inactivated by low concentrations of chlorine in the laboratory but survive in some habitats in water distribution systems. This report describes a field study which provides evidence that some types of fungi are able to grow in water distribution systems. Replicate samples from private residences were used to demonstrate that fungal densities are sometimes much greater than the levels which could be explained by adventitious spores. The microbiological content of water samples from fire hydrants was often significantly different from that of water samples from nearby private residences. The treated water input to distribution systems was found to be significantly lower in fungus content than water from private residences. Elevated storage tanks open to the atmosphere appear to be significant sources of fungal input to some systems.


2019 ◽  
Vol 163 ◽  
pp. 7-16
Author(s):  
Motasem N. Saidan ◽  
Ahlam I. Abdalla ◽  
Nivin Al Alami ◽  
Hanan Al-Naimat

Sign in / Sign up

Export Citation Format

Share Document