Identification of Key Genes Potentially Related to Triple Receptor Negative Breast Cancer by Microarray Analysis
AbstractTriple receptor negative breast cancer (TNBC) is the type of gynecological cancer in the elderly women. This study is aimed to explore molecular mechanism of TNBC via bioinformatics analysis. The gene expression profiles of GSE88715 (including 38 TNBC and 38 normal control) was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using the limma package in R software. Pathway and gene ontology (GO) enrichment analysis were performed based on various pathway dabases and GO database. Then, InnateDb interactome database, Cytoscape and PEWCC1 were applied to construct the protein-protein interaction (PPI) network and screen hub genes. Similarly, miRNet database, NetworkAnalyst database and Cytoscape were applied to construct the target gene - miRNA network and target gene - TF network, and screen targate genes. Pathway and GO enrichment analysis was further performed for hub genes, gene clusters identified via module analysis and targate genes. The expression of hub genes with prognostic values was validated on the UALCAN, cBio Portal, The Human Protein Atlas, receiver operator characteristic (ROC) curve analysis, RT-PCR analysis and immune infiltration analysis. A total of 949 DEGs were identified in TNBC (469 up regulated genes, and 480 down regulated genes), and they were mainly enriched in the terms of phospholipases, toxoplasmosis, immune response, cell surface, glycolysis, biosynthesis of amino acids, carboxylic acid metabolic process and organic substance catabolic process extracellular space. Hub genes including UBD, HLA-B, MYC and HSP90AB1 were identified via PPI network and modules, which were mainly enriched in immune response, antigen processing and presentation, cell cycle and pathways in cancer. Targate genes including CCDC80, PEG10, HOPX and CCNA2 were identified via target gene - miRNA network and target gene - TF network, which were mainly enriched in extracellular structure organization, validated targets of C-MYC transcriptional activation, ensemble of genes encoding core extracellular matrix including ECM glycoproteins and cell cycle. The top five significantly overexpressed mRNA (ADAM15, BATF, NOTCH3, ITGAX and SDC1) and the top five significantly underexpressed mRNA (RPL4, EEF1G, RPL3, RBMX and ABCC2) were selected for further validation in TNBCpatients and healthy controls. Analysis of the expression of genes in the various databases showed that ADAM15, BATF, NOTCH3, ITGAX, SDC1, RPL4, EEF1G, RPL3, RBMX and ABCC2 expressions have a cancer specific pattern in TNBC. Collectively, ADAM15, BATF, NOTCH3, ITGAX, SDC1, RPL4, EEF1G, RPL3, RBMX and ABCC2 may be useful candidate biomarkers for TNBC diagnosis, prognosis and theraputic targates.