ABSTRACTDetermining the physical performance of humans using several measures is essential to evaluating the severity of diseases, understanding the role of environmental factors, and developing therapeutic interventions. Development of analogous measures of physical performance in model organisms can help in identifying conserved signaling pathways and prioritizing drug candidates. In this study, we propose a multi-environment phenotyping (MEP) approach that generates a comprehensive set of measures indicative of physical performance in C. elegans. We challenge C. elegans in different mechanical environments of burrowing, swimming, and crawling, each of which places different physiological demands on the animals to generate locomotory forces. Implementation of the MEP approach is done using three established assays corresponding to each environment–a hydrogel-based burrowing assay, the CeleST swim assay, and the NemaFlex crawling strength assay. Using this approach, we study individuals and show that these three assays report on unique aspects of nematode physiology, as phenotypic measures obtained from different environments do not correlate with one another. Analysis of a subset of genes representative of oxidative stress, glucose metabolism, and fat metabolism show differential expression depending on the animal’s environment, suggesting that each environment evokes a response with distinct genetic requirements. To demonstrate the utility of the MEP platform, we evaluate the response of a muscular dystrophy model of C. elegans dys-1 to drug interventions of prednisone, melatonin and serotonin. We find that prednisone, which is the current treatment standard for human Duchenne muscular dystrophy, confers benefits in all three assays. Furthermore, while the tested compounds improve the physical performance of dys-1, these compounds are not able to fully restore the measures to wild-type levels, suggesting the need for discovery efforts to identify more efficacious compounds that could be aided using the MEP platform. In summary, the MEP platform’s ability to robustly define C. elegans locomotory phenotypes demonstrates the utility of the MEP approach toward identification of candidates for therapeutic intervention, especially in disease models in which the neuromuscular performance is impaired.