scholarly journals The relationship between dynamic functional network connectivity and spatial orientation in healthy young adults

2021 ◽  
Author(s):  
Mohammad S. E. Sendi ◽  
Charles A. Ellis ◽  
Robyn L. Miller ◽  
David H. Salat ◽  
Vince D. Calhoun

ABSTRACTSpatial orientation is essential to interacting with a physical environment, and better understanding it could contribute to a better understanding of a variety of diseases and disorders that are characterized by deficits in spatial orientation. Many previous studies have focused on the relationship between spatial orientation and individual brain regions, though in recent years studies have begun to examine spatial orientation from a network perspective. This study analyzes dynamic functional network connectivity (dFNC) values extracted from over 800 resting-state fMRI recordings of healthy young adults (age 22-37 years) and applies unsupervised machine learning methods to identify neural brain states that occur across all subjects. We estimated the occupancy rate (OCR) for each subject, which was proportional to the amount of time that they spent in each state, and investigated the link between the OCR and spatial orientation and the state-specific FNC values and spatial orientation controlling for age and sex. Our findings showed that the amount of time subjects spent in a state characterized by increased connectivity within and between visual, auditory, and sensorimotor networks and within the default mode network while at rest corresponded to their performance on tests of spatial orientation. We also found that increased sensorimotor network connectivity in two of the identified states negatively correlated with decreased spatial orientation, further highlighting the relationship between the sensorimotor network and spatial orientation. This study provides insight into how the temporal properties of the functional brain connectivity within and between key brain networks may influence spatial orientation.

2018 ◽  
Author(s):  
L. Sanfratello ◽  
J.M. Houck ◽  
V.D. Calhoun

AbstractAn investigation of differences in dynamic functional network connectivity (dFNC) of healthy controls (HC) versus that of schizophrenia patients (SP) was completed, using eyes-open resting state MEG data. The MEG analysis utilized a source-space activity estimate (MNE/dSPM) whose result was the input to a group spatial independent component analysis (ICA), on which the networks of our MEG dFNC analysis were based. We have previously reported that our MEG dFNC revealed that SP change between cognitive meta-states (repeating patterns of network correlations which are allowed to overlap in time) significantly more often and to states which are more different, relative to HC. Here, we extend our previous work to investigate the relationship between symptomology in SP and four meta-state metrics. We found a significant correlation between positive symptoms and the two meta-state statistics which showed significant differences between HC and SP. These two statistics quantified 1) how often individuals change state and 2) the total distance traveled within the state-space. We additionally found that a clustering of the meta-state metrics divides SP into groups which vary in symptomology. These results indicate specific relationships between symptomology and brain function for SP.


2020 ◽  
Author(s):  
Qianqian Si ◽  
Yongsheng Yuan ◽  
Caiting Gan ◽  
Min Wang ◽  
Lina Wang ◽  
...  

Abstract Background Traditional measures of static functional connectivity may not completely reflect the dynamic neural activity of levodopa-induced dyskinesia (LID) in Parkinson's disease (PD). This study was aimed to investigate the dynamic changes of large-scale functional network connectivity in the temporal domain in PD patients with and without LID. Methods Using dynamic functional network connectivity (dFNC) analysis, we evaluated 41 PD patients with LID (LID group) and 34 PD patients without LID (No-LID group), on and off their levodopa medications. Group spatial independent component analysis, sliding-window approach and k-means clusters were employed. Results In OFF phase, we found no differences between PD subgroups in temporal properties. In ON phase, compared than No-LID group, LID group occurred more frequently and dwelled longer in strongly connected State 1, characterized by strong connections between visual network (VIS) and other networks. When switching from OFF to ON phase, LID group occurred more frequently and dwelled longer in State 2 and occurred less frequently and dwelled shorter in State 3 (both states were strongly connected), while No-LID group occurred more frequently and dwelled longer in State 5 (weakly connected). Additionally, correlation analysis further demonstrated that the severity of dyskinesia was only associated with frequency of occurrence and dwell time in State 2, dominated by inferior frontal cortex in cognitive executive network (CEN), strongly connecting with sensorimotor network (SMN) and VIS. Conclusions Using dFNC analysis, we found that compared to those without LID, PD patients with LID may be involved in the superexcitation of VIS, as well as interconnections between CEN and SMN, VIS, having impact on inhibition of motor circuits. The dFNC analysis might provide new insights into the neural mechanisms of LID in PD.


2020 ◽  
Author(s):  
Md Abdur Rahaman ◽  
Eswar Damaraju ◽  
Jessica A. Turner ◽  
Theo G.M. van Erp ◽  
Daniel Mathalon ◽  
...  

AbstractBackgroundBrain imaging data collected from individuals are highly complex with unique variation; however, such variation is typically ignored in approaches that focus on group averages or even supervised prediction. State-of-the-art methods for analyzing dynamic functional network connectivity (dFNC) subdivide the entire time course into several (possibly overlapping) connectivity states (i.e., sliding window clusters). Though, such an approach does not factor in the homogeneity of underlying data and may end up with a less meaningful subgrouping of the dataset.MethodsDynamic-N-way tri-clustering (dNTiC) incorporates a homogeneity benchmark to approximate clusters that provide a more apples-to-apples comparison between groups within analogous subsets of time-space and subjects. dNTiC sorts the dFNC states by maximizing similarity across individuals and minimizing variance among the pairs of components within a state.ResultsResulting tri-clusters show significant differences between schizophrenia (SZ) and healthy control (HC) in distinct brain regions. Compared to HC, SZ in most tri-clusters show hypoconnectivity (low positive) among subcortical, default mode, cognitive control but hyper-connectivity (high positive) between sensory networks. In tri-cluster 3, HC subjects show significantly stronger connectivity among sensory networks and anticorrelation between subcortical and sensory networks compared to SZ. Results also provide statistically significant difference in reoccurrence time between SZ and HC subjects for two distinct dFNC states.ConclusionsOutcomes emphasize the utility of the proposed method for characterizing and leveraging variance within high-dimensional data to enhance the interpretability and sensitivity of measurements in the study of a heterogeneous disorder like schizophrenia and in unconstrained experimental conditions such as resting fMRI.


2021 ◽  
Vol 14 ◽  
Author(s):  
Mohammad S. E. Sendi ◽  
Elaheh Zendehrouh ◽  
Robyn L. Miller ◽  
Zening Fu ◽  
Yuhui Du ◽  
...  

BackgroundAlzheimer’s disease (AD) is the most common age-related problem and progresses in different stages, including mild cognitive impairment (early stage), mild dementia (middle-stage), and severe dementia (late-stage). Recent studies showed changes in functional network connectivity obtained from resting-state functional magnetic resonance imaging (rs-fMRI) during the transition from healthy aging to AD. By assuming that the brain interaction is static during the scanning time, most prior studies are focused on static functional or functional network connectivity (sFNC). Dynamic functional network connectivity (dFNC) explores temporal patterns of functional connectivity and provides additional information to its static counterpart.MethodWe used longitudinal rs-fMRI from 1385 scans (from 910 subjects) at different stages of AD (from normal to very mild AD or vmAD). We used group-independent component analysis (group-ICA) and extracted 53 maximally independent components (ICs) for the whole brain. Next, we used a sliding-window approach to estimate dFNC from the extracted 53 ICs, then group them into 3 different brain states using a clustering method. Then, we estimated a hidden Markov model (HMM) and the occupancy rate (OCR) for each subject. Finally, we investigated the link between the clinical rate of each subject with state-specific FNC, OCR, and HMM.ResultsAll states showed significant disruption during progression normal brain to vmAD one. Specifically, we found that subcortical network, auditory network, visual network, sensorimotor network, and cerebellar network connectivity decrease in vmAD compared with those of a healthy brain. We also found reorganized patterns (i.e., both increases and decreases) in the cognitive control network and default mode network connectivity by progression from normal to mild dementia. Similarly, we found a reorganized pattern of between-network connectivity when the brain transits from normal to mild dementia. However, the connectivity between visual and sensorimotor network connectivity decreases in vmAD compared with that of a healthy brain. Finally, we found a normal brain spends more time in a state with higher connectivity between visual and sensorimotor networks.ConclusionOur results showed the temporal and spatial pattern of whole-brain FNC differentiates AD form healthy control and suggested substantial disruptions across multiple dynamic states. In more detail, our results suggested that the sensory network is affected more than other brain network, and default mode network is one of the last brain networks get affected by AD In addition, abnormal patterns of whole-brain dFNC were identified in the early stage of AD, and some abnormalities were correlated with the clinical score.


Sign in / Sign up

Export Citation Format

Share Document