scholarly journals Diverse mechanisms for epigenetic imprinting in mammals

2021 ◽  
Author(s):  
Daniel Andergassen ◽  
Zachary D Smith ◽  
John L Rinn ◽  
Alexander Meissner

Genomic imprinting and X chromosome inactivation (XCI) require epigenetic mechanisms to direct allele-specific expression. Despite their critical roles in embryonic development, how universal epigenetic regulators coordinate these specific tasks from single locus to chromosome-scale remains understudied. Here, we systematically disrupted multiple essential epigenetic pathways within polymorphic F1 zygotes to examine postimplantation effects on canonical and non-canonical genomic imprinting as well as X chromosome inactivation. We find that DNA methylation and Polycomb group repressors are both indispensable for autosomal imprinting, albeit at distinct gene sets. Moreover, the extraembryonic ectoderm relies on a broader spectrum of unique imprinting mechanisms, including non-canonical targeting of maternal endogenous retrovirus (ERV) driven promoters by G9a. We further utilize our data to identify Polycomb dependent and independent gene clusters on the imprinted X chromosome, which appears to reflect distinct domains of Xist-mediated suppression. Our data has allowed us to assemble a comprehensive inventory of the epigenetic mechanisms utilized in eutherian mammals to maintain parent-specific imprinting, including an expanded view of the placental lineage that comprises multiple unique pathways.

2002 ◽  
Vol 22 (13) ◽  
pp. 4667-4676 ◽  
Author(s):  
Suyinn Chong ◽  
Joanna Kontaraki ◽  
Constanze Bonifer ◽  
Arthur D. Riggs

ABSTRACT To investigate the molecular mechanism(s) involved in the propagation and maintenance of X chromosome inactivation (XCI), the 21.4-kb chicken lysozyme (cLys) chromatin domain was inserted into the Hprt locus on the mouse X chromosome. The inserted fragment includes flanking matrix attachment regions (MARs), an origin of bidirectional replication (OBR), and all the cis-regulatory elements required for correct tissue-specific expression of cLys. It also contains a recently identified and widely expressed second gene, cGas41. The cLys domain is known to function as an autonomous unit resistant to chromosomal position effects, as evidenced by numerous transgenic mouse lines showing copy-number-dependent and development-specific expression of cLys in the myeloid lineage. We asked the questions whether this functional chromatin domain was resistant to XCI and whether the X inactivation signal could spread across an extended region of avian DNA. A generally useful method was devised to generate pure populations of macrophages with the transgene either on the active (Xa) or the inactive (Xi) chromosome. We found that (i) cLys and cGas41 are expressed normally from the Xa; (ii) the cLys chromatin domain, even when bracketed by MARs, is not resistant to XCI; (iii) transcription factors are excluded from lysozyme enhancers on the Xi; and (iv) inactivation correlates with methylation of a CpG island that is both an OBR and a promoter of the cGas41 gene.


2016 ◽  
Author(s):  
Kerem Wainer-Katsir ◽  
Michal Linial

ABSTRACTSex chromosomes pose an inherent genetic imbalance between genders. In mammals, one of the female’s X-chromosomes undergoes inactivation (Xi). Indirect measurements estimate that about 20% of Xi genes completely or partially escape inactivation. The identity of these escapee genes and their propensity to escape inactivation remain unsolved. A direct method for identifying escapees was applied by quantifying differential allelic expression from single cells. RNA-Seq fragments were assigned to informative SNPs which were labeled by the appropriate parental haplotype. This method was applied for measuring allelic specific expression from Chromosome-X (ChrX) and an autosomal chromosome as a control. We applied the protocol for measuring biallelic expression from ChrX to 104 primary fibroblasts. Out of 215 genes that were considered, only 13 genes (6%) were associated with biallelic expression. The sensitivity of escapees' identification was increased by combining SNP mapping for parental diploid genomes together with RNA-Seq from clonal single cells (25 lymphoblasts). Using complementary protocols, referred to as strict and relaxed, we confidently identified 25 and 31escapee genes, respectively. When pooled versions of 30 and 100 cells were used, <50% of these genes were revealed. We assessed the generality of our protocols in view of an escapee catalog compiled from indirect methods. The overlap between the escapee catalog and the genes’ list from this study is statistically significant (P-value of E-07). We conclude that single cells’ expression data are instrumental for studying X-inactivation with an improved sensitivity. Finally, our results support the emerging notion of the non-deterministic nature of genes that escape X-chromosome inactivation.


2020 ◽  
Author(s):  
Surbhi Kohli ◽  
Parul Gulati ◽  
Jayant Maini ◽  
Shamsudheen KV ◽  
Rajesh Pandey ◽  
...  

AbstractIn mealybugs, transcriptional inactivation of the entire paternal genome in males, due to genomic imprinting, is closely correlated with sex determination. The sequencing, de-novo assembly and annotation of the mealybug, Maconellicoccus hirsutus genome and its comparison with Planococcus citri genome strengthened our gene identification. The expanded gene classes, in both genomes relate to the high pesticide and radiation resistance; the phenotypes correlating with increased gene copy number rather than the acquisition of novel genes. The complete repertoire of genes for epigenetic regulation and multiple copies of genes for the core members of polycomb and trithorax complexes and the canonical chromatin remodelling complexes are present in both the genomes. Phylogenetic analysis with Drosophila shows high conservation of most genes, while a few have diverged outside the functional domain. The proteins involved in mammalian X-chromosome inactivation are identified in mealybugs, thus demonstrating the evolutionary conservation of factors for facultative heterochromatization. The transcriptome analysis of adult male and female M.hirsutus indicates the expression of the epigenetic regulators and the differential expression of metabolic pathway genes and the genes for sexual dimorphism. The depletion of endosymbionts in males during development is reflected in the significantly lower expression of endosymbiont genes in them.Author summaryThe mealybug system offers a unique model for genomic imprinting and differential regulation of homologous chromosomes that pre-dates the discovery of dosage compensation of X chromosomes in female mammals. In the absence of robust genetics for mealybugs, we generated and analysed the genome and transcriptome profile as primary resources for effective exploration. The expanded gene classes in the mealybugs relate to their unique biology; the expansion of pesticide genes, trehalose transporter, SETMAR and retrotransposons correlate with pesticide, desiccation and radiation resistance, respectively. The similarity in the genomic profile of two species of mealybugs strengthens our gene prediction. All the known epigenetic modifiers and proteins of the primary complexes like the PRC1,2 and the trithorax are conserved in mealybugs, so also the homologues of mammalian proteins involved in X chromosome inactivation. The high copy number of genes for many partners in these complexes could facilitate the inactivation of a large part of the genome and raise the possibility of formation of additional non-canonical complexes for sex specific chromosome inactivation. In adult males and females, the status of epigenetic regulation is likely to be in a maintenance state; therefore, it is of interest to analyze the expression of epigenetic regulators during development.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Ava C Carter ◽  
Jin Xu ◽  
Meagan Y Nakamoto ◽  
Yuning Wei ◽  
Brian J Zarnegar ◽  
...  

The Xist lncRNA mediates X chromosome inactivation (XCI). Here we show that Spen, an Xist-binding repressor protein essential for XCI , binds to ancient retroviral RNA, performing a surveillance role to recruit chromatin silencing machinery to these parasitic loci. Spen loss activates a subset of endogenous retroviral (ERV) elements in mouse embryonic stem cells, with gain of chromatin accessibility, active histone modifications, and ERV RNA transcription. Spen binds directly to ERV RNAs that show structural similarity to the A-repeat of Xist, a region critical for Xist-mediated gene silencing. ERV RNA and Xist A-repeat bind the RRM domains of Spen in a competitive manner. Insertion of an ERV into an A-repeat deficient Xist rescues binding of Xist RNA to Spen and results in strictly local gene silencing in cis. These results suggest that Xist may coopt transposable element RNA-protein interactions to repurpose powerful antiviral chromatin silencing machinery for sex chromosome dosage compensation.


2004 ◽  
Vol 2 (1) ◽  
pp. 27-37
Author(s):  
Anna A Pendina ◽  
Vera V Grinkevich ◽  
Tatyana V Kuznetsova ◽  
Vladislav S Baranov

 DNA methylation is one of the main mechanisms of epigenetic inheritance in eukaryotes. In this review we looked through the ways of 5-methylcytosin origin, it's distribution in genome, the mechanism of gene repression via hypermetilation, the role of metylation in genomic imprinting and in X-chromosome inactivation, in embryogenesis of mammals, in the processes of oncogenesis and in etiology of some common human inherited diseases


Sign in / Sign up

Export Citation Format

Share Document