scholarly journals Bexarotene derivatives modify responses in acute myeloid leukemia

2021 ◽  
Author(s):  
Gayla Hadwiger ◽  
Orsola di Martino ◽  
Margaret Ashley Ferris ◽  
Anh Vu ◽  
Thomas E. Frederick ◽  
...  

The retinoids all-trans retinoic acid (ATRA) and bexarotene are active in acute myeloid leukemia (AML), but responses beyond acute promyelocytic leukemia (APL) have been more modest than APL responses. To determine whether chemical modification of bexarotene might augment retinoid responses in AML, we screened a series of 38 bexarotene derivatives for activity in a mouse MLL-AF9 leukemia cell line, which exhibits strong synergistic sensitivity to the combination of ATRA and bexarotene. We found that RXRA potency correlated with anti-leukemic activity and that only one compound (103-4) with dual RARA/RXRA activity was capable of ATRA-independent anti-leukemic activity. We evaluated bioisostere and cyclohexane modifications for potential resistance to P450 metabolism and found that bioisosteres reduced potency and that bezopyran, cyclopentane, and cyclohexene modifications only modestly reduced susceptibility to metabolism. Collectively, these studies provide a map of the structure-activity relationships of bexarotene with outcomes related to RXRA and RARA activity, corepressor binding, compound stability, and anti-leukemic potential.  

2019 ◽  
Vol 11 (3) ◽  
Author(s):  
Takahisa Nakanishi ◽  
Aya Nakaya ◽  
Yusuke Nishio ◽  
Shinya Fujita ◽  
Atsushi Satake ◽  
...  

A 63-year-old man was diagnosed with a rare variant of acute promyelocytic leukemia (APL) with t(4;17)(q12; q21) that showed atypical morphological features and two different clinical symptoms. He was started on standard induction chemotherapy for acute myeloid leukemia, which decreased myeloblast numbers; however, APL-like blasts remained. He then received a salvage therapy that added all-trans retinoic acid (ATRA). After ATRA commenced, APL-like blasts disappeared and cytogenetic analysis became normal. However, myeloblasts subsequently increased, and he became resistant. In summary, this patient exhibited two different clinical courses of acute myeloid leukemia and APL.


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 385
Author(s):  
Chi Huu Nguyen ◽  
Alexander M. Grandits ◽  
George S. Vassiliou ◽  
Philipp B. Staber ◽  
Gerwin Heller ◽  
...  

All-trans retinoic acid (atRA) has a dramatic impact on the survival of patients with acute promyelocytic leukemia, but its therapeutic value in other types of acute myeloid leukemia (AML) has so far remained unclear. Given that AML is a stem cell-driven disease, recent studies have addressed the effects of atRA on leukemic stem cells (LSCs). atRA promoted stemness of MLL-AF9-driven AML in an Evi1-dependent manner but had the opposite effect in Flt3-ITD/Nup98-Hoxd13-driven AML. Overexpression of the stem cell-associated transcription factor EVI1 predicts a poor prognosis in AML, and is observed in different genetic subtypes, including cytogenetically normal AML. Here, we therefore investigated the effects of Evi1 in a mouse model for cytogenetically normal AML, which rests on the combined activity of Flt3-ITD and Npm1c mutations. Experimental expression of Evi1 on this background strongly promoted disease aggressiveness. atRA inhibited leukemia cell viability and stem cell-related properties, and these effects were counteracted by overexpression of Evi1. These data further underscore the complexity of the responsiveness of AML LSCs to atRA and point out the need for additional investigations which may lay a foundation for a precision medicine-based use of retinoids in AML.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2143
Author(s):  
Maria Hernandez-Valladares ◽  
Rebecca Wangen ◽  
Elise Aasebø ◽  
Håkon Reikvam ◽  
Frode S. Berven ◽  
...  

All-trans retinoic acid (ATRA) and valproic acid (VP) have been tried in the treatment of non-promyelocytic variants of acute myeloid leukemia (AML). Non-randomized studies suggest that the two drugs can stabilize AML and improve normal peripheral blood cell counts. In this context, we used a proteomic/phosphoproteomic strategy to investigate the in vivo effects of ATRA/VP on human AML cells. Before starting the combined treatment, AML responders showed increased levels of several proteins, especially those involved in neutrophil degranulation/differentiation, M phase regulation and the interconversion of nucleotide di- and triphosphates (i.e., DNA synthesis and binding). Several among the differentially regulated phosphorylation sites reflected differences in the regulation of RNA metabolism and apoptotic events at the same time point. These effects were mainly caused by increased cyclin dependent kinase 1 and 2 (CDK1/2), LIM domain kinase 1 and 2 (LIMK1/2), mitogen-activated protein kinase 7 (MAPK7) and protein kinase C delta (PRKCD) activity in responder cells. An extensive effect of in vivo treatment with ATRA/VP was the altered level and phosphorylation of proteins involved in the regulation of transcription/translation/RNA metabolism, especially in non-responders, but the regulation of cell metabolism, immune system and cytoskeletal functions were also affected. Our analysis of serial samples during the first week of treatment suggest that proteomic and phosphoproteomic profiling can be used for the early identification of responders to ATRA/VP-based treatment.


2021 ◽  
Vol 14 (5) ◽  
pp. 423
Author(s):  
Øystein Bruserud ◽  
Galina Tsykunova ◽  
Maria Hernandez-Valladares ◽  
Hakon Reikvam ◽  
Tor Henrik Anderson Tvedt

Even though allogeneic stem cell transplantation is the most intensive treatment for acute myeloid leukemia (AML), chemo-resistant leukemia relapse is still one of the most common causes of death for these patients, as is transplant-related mortality, i.e., graft versus host disease, infections, and organ damage. These relapse patients are not always candidates for additional intensive therapy or re-transplantation, and many of them have decreased quality of life and shortened expected survival. The efficiency of azacitidine for treatment of posttransplant AML relapse has been documented in several clinical trials. Valproic acid is an antiepileptic fatty acid that exerts antileukemic activity through histone deacetylase inhibition. The combination of valproic acid and all-trans retinoic acid (ATRA) is well tolerated even by unfit or elderly AML patients, and low-toxicity chemotherapy (e.g., azacitidine) can be added to this combination. The triple combination of azacitidine, valproic acid, and ATRA may therefore represent a low-intensity and low-toxicity alternative for these patients. In the present review, we review and discuss the general experience with valproic acid/ATRA in AML therapy and we discuss its possible use in low-intensity/toxicity treatment of post-allotransplant AML relapse. Our discussion is further illustrated by four case reports where combined treatments with sequential azacitidine/hydroxyurea, valproic acid, and ATRA were used.


Blood ◽  
2006 ◽  
Vol 107 (8) ◽  
pp. 3330-3338 ◽  
Author(s):  
Beatrice U. Mueller ◽  
Thomas Pabst ◽  
José Fos ◽  
Vibor Petkovic ◽  
Martin F. Fey ◽  
...  

Abstract Tightly regulated expression of the transcription factor PU.1 is crucial for normal hematopoiesis. PU.1 knockdown mice develop acute myeloid leukemia (AML), and PU.1 mutations have been observed in some populations of patients with AML. Here we found that conditional expression of promyelocytic leukemia-retinoic acid receptor α (PML-RARA), the protein encoded by the t(15;17) translocation found in acute promyelocytic leukemia (APL), suppressed PU.1 expression, while treatment of APL cell lines and primary cells with all-trans retinoic acid (ATRA) restored PU.1 expression and induced neutrophil differentiation. ATRA-induced activation was mediated by a region in the PU.1 promoter to which CEBPB and OCT-1 binding were induced. Finally, conditional expression of PU.1 in human APL cells was sufficient to trigger neutrophil differentiation, whereas reduction of PU.1 by small interfering RNA (siRNA) blocked ATRA-induced neutrophil differentiation. This is the first report to show that PU.1 is suppressed in acute promyelocytic leukemia, and that ATRA restores PU.1 expression in cells harboring t(15;17).


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Chi Huu Nguyen ◽  
Katharina Bauer ◽  
Hubert Hackl ◽  
Angela Schlerka ◽  
Elisabeth Koller ◽  
...  

AbstractEcotropic virus integration site 1 (EVI1), whose overexpression characterizes a particularly aggressive subtype of acute myeloid leukemia (AML), enhanced anti-leukemic activities of all-trans retinoic acid (atRA) in cell lines and patient samples. However, the drivers of leukemia formation, therapy resistance, and relapse are leukemic stem cells (LSCs), whose properties were hardly reflected in these experimental setups. The present study was designed to address the effects of, and interactions between, EVI1 and retinoids in AML LSCs. We report that Evi1 reduced the maturation of leukemic cells and promoted the abundance, quiescence, and activity of LSCs in an MLL-AF9-driven mouse model of AML. atRA further augmented these effects in an Evi1 dependent manner. EVI1 also strongly enhanced atRA regulated gene transcription in LSC enriched cells. One of their jointly regulated targets, Notch4, was an important mediator of their effects on leukemic stemness. In vitro exposure of leukemic cells to a pan-RAR antagonist caused effects opposite to those of atRA. In vivo antagonist treatment delayed leukemogenesis and reduced LSC abundance, quiescence, and activity in Evi1high AML. Key results were confirmed in human myeloid cell lines retaining some stem cell characteristics as well as in primary human AML samples. In summary, our study is the first to report the importance of EVI1 for key properties of AML LSCs. Furthermore, it shows that atRA enhances, and a pan-RAR antagonist counteracts, the effects of EVI1 on AML stemness, thus raising the possibility of using RAR antagonists in the therapy of EVI1high AML.


2012 ◽  
Vol 18 (4) ◽  
pp. 605-611 ◽  
Author(s):  
Tino Schenk ◽  
Weihsu Claire Chen ◽  
Stefanie Göllner ◽  
Louise Howell ◽  
Liqing Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document