scholarly journals Ultrafast Light Targeting for High-Throughput Precise Control of Neuronal Networks

2021 ◽  
Author(s):  
Giulia Faini ◽  
Clement Molinier ◽  
Cecile Telliez ◽  
Christophe Tourain ◽  
Benoit C Forget ◽  
...  

Understanding how specific sets of neurons fire and wire together during cognitive-relevant activity is one of the most pressing questions in neuroscience. Two-photon, single-cell resolution optogenetics based on holographic light-targeting approaches enables accurate spatio-temporal control of individual or multiple neurons. Yet, currently, the ability to drive asynchronous activity in distinct cells is critically limited to a few milliseconds and the achievable number of targets to several dozens. In order to expand the capability of single-cell optogenetics, we introduce an approach capable of ultra-fast sequential light targeting (FLiT), based on switching temporally focused beams between holograms at kHz rates. We demonstrate serial-parallel photostimulation strategies capable of multi-cell sub-millisecond temporal control and many-fold expansion of the number of activated cells. This approach will be important for experiments that require rapid and precise cell stimulation with defined spatio-temporal activity patterns and optical control of large neuronal ensembles.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Giulio Bondanelli ◽  
Thomas Deneux ◽  
Brice Bathellier ◽  
Srdjan Ostojic

Across sensory systems, complex spatio-temporal patterns of neural activity arise following the onset (ON) and offset (OFF) of stimuli. While ON responses have been widely studied, the mechanisms generating OFF responses in cortical areas have so far not been fully elucidated. We examine here the hypothesis that OFF responses are single-cell signatures of recurrent interactions at the network level. To test this hypothesis, we performed population analyses of two-photon calcium recordings in the auditory cortex of awake mice listening to auditory stimuli, and compared linear single-cell and network models. While the single-cell model explained some prominent features of the data, it could not capture the structure across stimuli and trials. In contrast, the network model accounted for the low-dimensional organisation of population responses and their global structure across stimuli, where distinct stimuli activated mostly orthogonal dimensions in the neural state-space.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Roger I Grant ◽  
Elizabeth M Doncheck ◽  
Kelsey M Vollmer ◽  
Kion T Winston ◽  
Elizaveta V Romanova ◽  
...  

Non-overlapping cell populations within dorsomedial prefrontal cortex (dmPFC), defined by gene expression or projection target, control dissociable aspects of reward seeking through unique activity patterns. However, even within these defined cell populations considerable cell-to-cell variability is found, suggesting that greater resolution is needed to understand information processing in dmPFC. Here we use two-photon calcium imaging in awake, behaving mice to monitor the activity of dmPFC excitatory neurons throughout Pavlovian reward conditioning. We characterize five unique neuronal ensembles that each encode specialized information related to a sucrose reward, reward-predictive cues, and behavioral responses to those cues. The ensembles differentially emerge across daily training sessions - and stabilize after learning - in a manner that improves the predictive validity of dmPFC activity dynamics for deciphering variables related to behavioral conditioning. Our results characterize the complex dmPFC neuronal ensemble dynamics that stably predict reward availability and initiation of conditioned reward seeking following cue-reward learning.


2019 ◽  
Author(s):  
Giulio Bondanelli ◽  
Thomas Deneux ◽  
Brice Bathellier ◽  
Srdjan Ostojic

AbstractAcross sensory systems, complex spatio-temporal patterns of neural activity arise following the onset (ON) and offset (OFF) of stimuli. While ON responses have been widely studied, the mechanisms generating OFF responses in cortical areas have so far not been fully elucidated. We examine here the hypothesis that OFF responses are single-cell signatures of network dynamics and propose a network model that generates transient OFF responses through recurrent interactions. To test this model, we performed population analyses of two-photon calcium recordings in the auditory cortex of awake mice listening to auditory stimuli. We found that the network model accounts for the low-dimensional organisation of population responses and their global structure across stimuli, where distinct stimuli activate mostly orthogonal dimensions in the neural state-space. In contrast, a single-cell mechanism explains some prominent features of the data, but does not account for the structure across stimuli and trials captured by the network model.


2020 ◽  
Author(s):  
Roger I Grant ◽  
Elizabeth M Doncheck ◽  
Kelsey M Vollmer ◽  
Kion T Winston ◽  
Elizaveta V Romanova ◽  
...  

Non-overlapping cell populations within dorsomedial prefrontal cortex (dmPFC), defined by gene expression or projection target, control dissociable aspects of reward seeking through unique activity patterns. However, even within these defined cell populations considerable cell-to-cell variability is found, suggesting that greater resolution is needed to understand information processing in dmPFC. Here we use two-photon calcium imaging in awake, behaving mice to monitor the activity of dmPFC excitatory neurons throughout Pavlovian sucrose conditioning. We characterize five unique neuronal ensembles that each encode specialized information related to a reward, reward-predictive cues, and behavioral responses to reward-predictive cues. The ensembles differentially emerge across learning, and stabilize after learning, in a manner that improves the predictive validity of dmPFC activity dynamics for deciphering variables related to behavioral conditioning. Our results characterize the complex dmPFC neuronal ensemble dynamics that relay learning-dependent signals for prediction of reward availability and initiation of conditioned reward seeking.


2018 ◽  
Author(s):  
Michael Wenzel ◽  
Shuting Han ◽  
Elliot H. Smith ◽  
Erik Hoel ◽  
Bradley Greger ◽  
...  

SUMMARYMedically-induced loss of consciousness (mLOC) has been linked to a macroscale break-down of brain connectivity, yet the neural microcircuit correlates of mLOC remain unknown. We applied non-linear t-stochastic neighbor embedding (t-SNE) and Lempel-Ziv-Welch complexity analysis to two-photon calcium imaging and local field potential (LFP) measurements of cortical microcircuit activity across anesthetic depth in mice, and to micro-electrode array recordings in human subjects. We find that mLOC disrupts population activity patterns by i) a reduction of discriminable network microstates and ii) a reduction of independent neuronal ensembles. These alterations are not explained by a simple reduction of neuronal activity and reveal abnormal functional microcircuits. Thus, normal neuronal ensemble dynamics could contribute to the emergence of conscious states.


2017 ◽  
Author(s):  
N. Kaya ◽  
G. Kaya ◽  
J. Strohaber ◽  
A. Kolomenskii ◽  
H. Schuessler

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1038
Author(s):  
Paola Sanjuan-Alberte ◽  
Jayasheelan Vaithilingam ◽  
Jonathan C. Moore ◽  
Ricky D. Wildman ◽  
Christopher J. Tuck ◽  
...  

Conductive hydrogel-based materials are attracting considerable interest for bioelectronic applications due to their ability to act as more compatible soft interfaces between biological and electrical systems. Despite significant advances that are being achieved in the manufacture of hydrogels, precise control over the topographies and architectures remains challenging. In this work, we present for the first time a strategy to manufacture structures with resolutions in the micro-/nanoscale based on hydrogels with enhanced electrical properties. Gelatine methacrylate (GelMa)-based inks were formulated for two-photon polymerisation (2PP). The electrical properties of this material were improved, compared to pristine GelMa, by dispersion of multi-walled carbon nanotubes (MWCNTs) acting as conductive nanofillers, which was confirmed by electrochemical impedance spectroscopy and cyclic voltammetry. This material was also confirmed to support human induced pluripotent stem cell-derived cardiomyocyte (hPSC-CMs) viability and growth. Ultra-thin film structures of 10 µm thickness and scaffolds were manufactured by 2PP, demonstrating the potential of this method in areas spanning tissue engineering and bioelectronics. Though further developments in the instrumentation are required to manufacture more complex structures, this work presents an innovative approach to the manufacture of conductive hydrogels in extremely low resolution.


2020 ◽  
Vol 10 (23) ◽  
pp. 8563
Author(s):  
Sangmo Koo

Two-photon polymerization (TPP) based on the femtosecond laser (fs laser) direct writing technique in the realization of high-resolution three-dimensional (3D) shapes is spotlighted as a unique and promising processing technique. It is also interesting that TPP can be applied to various applications in not only optics, chemistry, physics, biomedical engineering, and microfluidics but also micro-robotics systems. Effort has been made to design innovative microscale actuators, and research on how to remotely manipulate actuators is also constantly being conducted. Various manipulation methods have been devised including the magnetic, optical, and acoustic control of microscale actuators, demonstrating the great potential for non-contact and non-invasive control. However, research related to the precise control of microscale actuators is still in the early stages, and in-depth research is needed for the efficient control and diversification of a range of applications. In the future, the combination of the fs laser-based fabrication technique for the precise fabrication of microscale actuators/robots and their manipulation can be established as a next-generation processing method by presenting the possibility of applications to various areas.


1995 ◽  
Vol 270 (47) ◽  
pp. 28251-28256 ◽  
Author(s):  
Heleen Lie-Venema ◽  
T. Labruyère Wil ◽  
A. van Roon Marian ◽  
A. J. de Boer Piet ◽  
Antoon F.M. Moorman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document