scholarly journals Data Analysis and Forecasting of COVID-19 Pandemic in Kuwait

Author(s):  
Kayode Oshinubi ◽  
Fahimah Al-Awadhi ◽  
Mustapha Rachdi ◽  
Jacques Demongeot

The first COVID 19 case of Kuwait was announced on 24th February, 2020 and the daily new cases increases exponentially since then until May, 2020 when the first wave started to decline. The same exponential dynamics has been observed between January and March, 2021. The forecast of new cases and death recorded daily is crucial so that health experts and citizens can be guided in order to avoid escalation of the pandemic. We propose a deterministic method to predict the basic reproduction number Ro of first and second wave of COVID-19 cases in Kuwait and also to forecast the daily new cases and death of the pandemic in the country. Forecasting has been done using ARIMA model, Exponential smoothing model, Holts method, Prophet forecasting model and machine learning models like log-linear, polynomial and support vector regressions. The results presented aligned with other methods used to predict Ro in first and second waves and the forecasting clearly shows the trend of the pandemic in Kuwait. The deterministic prediction of Ro is a good forecasting tool available during the exponential phase of the contagion, which shows an increasing trend during the beginning of the first and second waves of the pandemic in Kuwait.

Author(s):  
Kayode Oshinubi ◽  
◽  
Fahimah Al-Awadhi ◽  
Mustapha Rachdi ◽  
Jacques Demongeot ◽  
...  

Coronavirus (COVID-19) has continued to be a global threat to public health. When the coronavirus pandemic began early in 2020, experts wondered if there would be waves of cases, a pattern seen in other virus pandemics. The overall pattern so far has been one of increasing cases of COVID-19 followed by a decline, and we observed a second wave of increased cases and yet we are still exploring this pandemic. Hence, updating the prediction model for the new cases of COVID-19 for different waves is essential to monitor the spreading of the virus and control the disease. Time series models have extensively been considered as the convenient methods to predict the prevalence or spreading rate of the disease. This study, therefore, aimed to apply the Autoregressive Integrated Moving Average (ARIMA) modelling approach for predicting new cases of coronavirus (COVID-19). We propose a deterministic method to predict the basic reproduction number Ro of first and second wave transition of COVID-19 cases in Kuwait and also to forecast the daily new cases and deaths of the pandemic in the country. Forecasting has been done using ARIMA model, Exponential smoothing model, Holt’s method, Prophet forecasting model and machine learning models like log-linear, polynomial and support vector regressions. The results presented aligned with other methods used to predict Ro in first and second waves and the forecasting clearly shows the trend of the pandemic in Kuwait. The deterministic prediction of Ro is a good forecasting tool available during the exponential phase of the contagion, which shows an increasing trend during the beginning of the first and second waves of the pandemic in Kuwait. The results show that support vector regression has achieved the best performance for prediction while a simple exponential model without trend gives good optimal results for forecasting of Kuwait COVID-19 data.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Wenyu Zhang ◽  
Zhongyue Su ◽  
Hongli Zhang ◽  
Yanru Zhao ◽  
Zhiyuan Zhao

Accurate wind speed forecasting is important for the reliable and efficient operation of the wind power system. The present study investigated singular spectrum analysis (SSA) with a reduced parameter algorithm in three time series models, the autoregressive integrated moving average (ARIMA) model, the support vector machine (SVM) model, and the artificial neural network (ANN) model, to forecast the wind speed in Shandong province, China. In the proposed model, the weather research and forecasting model (WRF) is first employed as a physical background to provide the elements of weather data. To reduce these noises, SSA is used to develop a self-adapting parameter selection algorithm that is fully data-driven. After optimization, the SSA-based forecasting models are applied to forecasting the immediate short-term wind speed and are adopted at ten wind farms in China. Finally, the performance of the proposed approach is evaluated using observed data according to three error calculation methods. The simulation results from ten cases show that the proposed method has better forecasting performance than the traditional methods.


2021 ◽  
Vol 10 (6) ◽  
pp. 1256
Author(s):  
Ko Nakajo ◽  
Hiroshi Nishiura

Estimation of the effective reproduction number, R(t), of coronavirus disease (COVID-19) in real-time is a continuing challenge. R(t) reflects the epidemic dynamics based on readily available illness onset data, and is useful for the planning and implementation of public health and social measures. In the present study, we proposed a method for computing the R(t) of COVID-19, and applied this method to the epidemic in Osaka prefecture from February to September 2020. We estimated R(t) as a function of the time of infection using the date of illness onset. The epidemic in Osaka came under control around 2 April during the first wave, and 26 July during the second wave. R(t) did not decline drastically following any single intervention. However, when multiple interventions were combined, the relative reductions in R(t) during the first and second waves were 70% and 51%, respectively. Although the second wave was brought under control without declaring a state of emergency, our model comparison indicated that relying on a single intervention would not be sufficient to reduce R(t) < 1. The outcome of the COVID-19 pandemic continues to rely on political leadership to swiftly design and implement combined interventions capable of broadly and appropriately reducing contacts.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 196 ◽  
Author(s):  
Lihui Zhang ◽  
Riletu Ge ◽  
Jianxue Chai

China’s energy consumption issues are closely associated with global climate issues, and the scale of energy consumption, peak energy consumption, and consumption investment are all the focus of national attention. In order to forecast the amount of energy consumption of China accurately, this article selected GDP, population, industrial structure and energy consumption structure, energy intensity, total imports and exports, fixed asset investment, energy efficiency, urbanization, the level of consumption, and fixed investment in the energy industry as a preliminary set of factors; Secondly, we corrected the traditional principal component analysis (PCA) algorithm from the perspective of eliminating “bad points” and then judged a “bad spot” sample based on signal reconstruction ideas. Based on the above content, we put forward a robust principal component analysis (RPCA) algorithm and chose the first five principal components as main factors affecting energy consumption, including: GDP, population, industrial structure and energy consumption structure, urbanization; Then, we applied the Tabu search (TS) algorithm to the least square to support vector machine (LSSVM) optimized by the particle swarm optimization (PSO) algorithm to forecast China’s energy consumption. We collected data from 1996 to 2010 as a training set and from 2010 to 2016 as the test set. For easy comparison, the sample data was input into the LSSVM algorithm and the PSO-LSSVM algorithm at the same time. We used statistical indicators including goodness of fit determination coefficient (R2), the root means square error (RMSE), and the mean radial error (MRE) to compare the training results of the three forecasting models, which demonstrated that the proposed TS-PSO-LSSVM forecasting model had higher prediction accuracy, generalization ability, and higher training speed. Finally, the TS-PSO-LSSVM forecasting model was applied to forecast the energy consumption of China from 2017 to 2030. According to predictions, we found that China shows a gradual increase in energy consumption trends from 2017 to 2030 and will breakthrough 6000 million tons in 2030. However, the growth rate is gradually tightening and China’s energy consumption economy will transfer to a state of diminishing returns around 2026, which guides China to put more emphasis on the field of energy investment.


2018 ◽  
Vol 7 (3.15) ◽  
pp. 36 ◽  
Author(s):  
Sarah Nadirah Mohd Johari ◽  
Fairuz Husna Muhamad Farid ◽  
Nur Afifah Enara Binti Nasrudin ◽  
Nur Sarah Liyana Bistamam ◽  
Nur Syamira Syamimi Muhammad Shuhaili

Predicting financial market changes is an important issue in time series analysis, receiving an increasing attention due to financial crisis. Autoregressive integrated moving average (ARIMA) model has been one of the most widely used linear models in time series forecasting but ARIMA model cannot capture nonlinear patterns easily. Generalized autoregressive conditional heteroscedasticity (GARCH) model applied understanding of volatility depending to the estimation of previous forecast error and current volatility, improving ARIMA model. Support vector machine (SVM) and artificial neural network (ANN) have been successfully applied in solving nonlinear regression estimation problems. This study proposes hybrid methodology that exploits unique strength of GARCH + SVM model, and GARCH + ANN model in forecasting stock index. Real data sets of stock prices FTSE Bursa Malaysia KLCI were used to examine the forecasting accuracy of the proposed model. The results shows that the proposed hybrid model achieves best forecasting compared to other model.  


In international market, trading of metals has played a vital role. Metal cost might affect the nation’s economy. There are so many base metals available which have been utilized in world trading for construction and manufacturing of goods. Among them gold, silver, platinum, palladium have been treated as precious metals which has economic values. Therefore today’s researchers have concentrated their investigation on metal prediction using diversified algorithms like Auto Regressive Integrated Moving Average (ARIMA), KNN (K-Nearest Neighbor),Artificial Neural Network (ANN) and Support Vector Machine (SVM) etc. In this paper our foremost objective is to predict gold price, so we put our research on this metal. In this work we have employed rough set based affinity propagation algorithm for predicting future gold price and we compared our proposed model with rough set and ARIMA model basing upon the performance measures such as root mean square error (RMSE) and mean absolute percentage error (MAPE). The experimental result shows that the proposed model outperforms rough set and ARIMA model


Sign in / Sign up

Export Citation Format

Share Document