scholarly journals Evolution of protection after maternal immunization for respiratory syncytial virus in cotton rats

2021 ◽  
Author(s):  
Jorge C.G. Blanco ◽  
Lori McGinnes-Cullen ◽  
Arash Kamali ◽  
Fatoumata Sylla ◽  
Marina Boukhavalova ◽  
...  

Maternal anti-respiratory syncytial virus (RSV) antibodies acquired by the fetus through the placenta protect neonates from RSV disease through the first weeks of life.  In the cotton rat model of RSV infections, we previously reported that immunization of dams during pregnancy with virus-like particles assembled with mutation stabilized pre-fusion F protein as well as the wild type G protein resulted in robust protection of their offspring from RSV challenge (Blanco, et al Journal of Virology 93: e00914-19, https://doi.org/10.1128/JVI.00914-19).  Here we describe the durability of those protective responses in dams, the durability of protection in offspring, and the transfer of that protection to offspring of two consecutive pregnancies without a second boost immunization.  We report that four weeks after birth, offspring of the first pregnancy were significantly protected from RSV replication in both lungs and nasal tissues after RSV challenge, but protection was reduced in pups at 6 weeks after birth.   However, the overall protection of offspring of the second pregnancy was considerably reduced, even at four weeks of age.  This drop in protection occurred even though the levels of total anti-pre-F IgG and neutralizing antibody titers in dams remained at similar, high levels before and after the second pregnancy.  The results are consistent with an evolution of antibody properties in dams to populations less efficiently transferred to offspring or the less efficient transfer of antibodies in elderly dams.

2021 ◽  
Vol 17 (12) ◽  
pp. e1009856
Author(s):  
Jorge C. G. Blanco ◽  
Lori M. Cullen ◽  
Arash Kamali ◽  
Fatoumata Y. D. Sylla ◽  
Marina S. Boukhvalova ◽  
...  

Maternal anti-respiratory syncytial virus (RSV) antibodies acquired by the fetus through the placenta protect neonates from RSV disease through the first weeks of life. In the cotton rat model of RSV infections, we previously reported that immunization of dams during pregnancy with virus-like particles assembled with mutation stabilized pre-fusion F protein as well as the wild type G protein resulted in robust protection of their offspring from RSV challenge. Here we describe the durability of those protective responses in dams, the durability of protection in offspring, and the transfer of that protection to offspring of two consecutive pregnancies without a second boost immunization. We report that four weeks after birth, offspring of the first pregnancy were significantly protected from RSV replication in both lungs and nasal tissues after RSV challenge, but protection was reduced in pups at 6 weeks after birth. However, the overall protection of offspring of the second pregnancy was considerably reduced, even at four weeks of age. This drop in protection occurred even though the levels of total anti-pre-F IgG and neutralizing antibody titers in dams remained at similar, high levels before and after the second pregnancy. The results are consistent with an evolution of antibody properties in dams to populations less efficiently transferred to offspring or the less efficient transfer of antibodies in elderly dams.


2003 ◽  
Vol 77 (24) ◽  
pp. 13156-13160 ◽  
Author(s):  
Gregory A. Prince ◽  
James J. Mond ◽  
David D. Porter ◽  
Kevin C. Yim ◽  
Steve J. Lan ◽  
...  

ABSTRACT CpG oligodeoxynucleotides (ODN) were identified that stimulated immunoglobulin production and cell proliferation in cotton rat cells in vitro. Three of these ODN were used as a mucosal adjuvant in the noses of cotton rats immunized via this route with respiratory syncytial virus fusion (F) protein. The CpG ODN markedly increased the cotton rat humoral neutralizing-antibody response to respiratory syncytial virus. Such immunized animals had a marked reduction in the production of infectious virus after a live-virus challenge. Animals immunized with the combination of F protein and CpG developed enhanced pulmonary pathology consisting of alveolitis and interstitial pneumonitis after a live-virus challenge. Similar enhanced disease has been seen in cotton rats and children immunized with formalin-inactivated respiratory syncytial virus.


1995 ◽  
Vol 268 (6) ◽  
pp. L1006-L1011 ◽  
Author(s):  
G. N. Colasurdo ◽  
V. G. Hemming ◽  
G. A. Prince ◽  
J. E. Loader ◽  
J. P. Graves ◽  
...  

A dysfunction of the nonadrenergic noncholinergic inhibitory (NANCi) system has been invoked as a possible mechanism underlying or contributing to altered airway function. In the present study we assessed whether human respiratory syncytial virus (HRSV) infection affects the airways' neurally mediated contractile and relaxant (NANCi) responses in vitro. NANCi responses were studied on tracheal smooth muscle (TSM) segments obtained from young adult cotton rats, a well-established model for HRSV infection. To assess NANCi responses, TSM segments were removed and placed in tissue baths containing modified Krebs-Henseleit, atropine (1 x 10(-6) M) and propranolol (5 x 10(-6) M). After contraction with neurokinin A (1 x 10(-5) M), electrical field stimulation (EFS) was applied at stimulation frequencies ranging from 5 to 30 Hz. The NANCi responses were measured and expressed as the mean (+/- SE) percent relaxation. To evaluate neurally mediated contractile responses, full frequency response curves (0.5-30 Hz) to EFS were also performed. We found significantly decreased NANCi responses in TSM segments obtained from infected cotton rats (n = 12) compared with control animals (n = 9) (P < 0.002). Furthermore, the contractile responses to EFS were increased in infected animals compared with the control group (P = 0.0001). These findings demonstrate that HRSV infection leads to an enhanced contractile response to EFS and a significant decrease in NANCi response in cotton rat airways in vitro. This disruption of the neural control of airways may lead to the development of altered airway function.


2002 ◽  
Vol 46 (7) ◽  
pp. 2299-2302 ◽  
Author(s):  
Martin G. Ottolini ◽  
Spencer J. Curtis ◽  
David D. Porter ◽  
Amy Mathews ◽  
Joann Y. Richardson ◽  
...  

ABSTRACT Triamcinolone acetonide, methylprednisolone, and dexamethasone were each evaluated in combination with palivizumab (Synagis) for the therapy of established respiratory syncytial virus infection in the cotton rat. Triamcinolone and methylprednisolone proved to be more effective than dexamethasone in reducing lung pathology. No recurrence of viral replication or pulmonary pathology followed the cessation of therapy.


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 628 ◽  
Author(s):  
Wei Zhang ◽  
Lu-Jing Zhang ◽  
Lu-Ting Zhan ◽  
Min Zhao ◽  
Guang-Hua Wu ◽  
...  

Background: To date, there is no licensed vaccine available to prevent respiratory syncytial virus (RSV) infection. The valuable pre-fusion conformation of the fusion protein (pre-F) is prone to lose high neutralizing antigenic sites. The goals of this study were to stabilize pre-F protein by fixatives and try to find the possibility of developing an inactivated RSV vaccine. Methods: The screen of the optimal fixative condition was performed with flow cytometry. BALB/c mice were immunized intramuscularly with different immunogens. The serum neutralizing antibody titers of immunized mice were determined by neutralization assay. The protection and safety of these immunogens were assessed. Results: Fixation in an optimal concentration of formaldehyde (0.0244%–0.0977%) or paraformaldehyde (0.0625%–1%) was able to stabilize pre-F. Additionally, BALB/c mice inoculated with optimally stabilized pre-F protein (opti-fixed) induced a higher anti-RSV neutralization (9.7 log2, mean value of dilution rate) than those inoculated with unstable (unfixed, 8.91 log2, p < 0.01) or excessively fixed (exce-fixed, 7.28 log2, p < 0.01) pre-F protein. Furthermore, the opti-fixed immunogen did not induce enhanced RSV disease. Conclusions: Only the proper concentration of fixatives could stabilize pre-F and the optimal formaldehyde condition provides a potential reference for development of an inactivated RSV vaccine.


2017 ◽  
Vol 91 (19) ◽  
Author(s):  
Shannon I. Phan ◽  
James R. Zengel ◽  
Huiling Wei ◽  
Zhuo Li ◽  
Dai Wang ◽  
...  

ABSTRACT Human respiratory syncytial virus (RSV) is the leading cause of pediatric bronchiolitis and hospitalizations. RSV can also cause severe complications in elderly and immunocompromised individuals. There is no licensed vaccine. We previously generated a parainfluenza virus 5 (PIV5)-vectored vaccine candidate expressing the RSV fusion protein (F) that was immunogenic and protective in mice. In this work, our goal was to improve the original vaccine candidate by modifying the PIV5 vector or by modifying the RSV F antigen. We previously demonstrated that insertion of a foreign gene at the PIV5 small hydrophobic (SH)–hemagglutinin-neuraminidase (HN) junction or deletion of PIV5 SH increased vaccine efficacy. Additionally, other groups have demonstrated that antibodies against the prefusion conformation of RSV F have more potent neutralizing activity than antibodies against the postfusion conformation. Therefore, to improve on our previously developed vaccine candidate, we inserted RSV F at the PIV5 SH-HN gene junction or used RSV F to replace PIV5 SH. We also engineered PIV5 to express a prefusion-stabilized F mutant. The candidates were tested in BALB/c mice via the intranasal route and induced both humoral and cell-mediated immunity. They also protected against RSV infection in the mouse lung. When they were administered intranasally or subcutaneously in cotton rats, the candidates were highly immunogenic and reduced RSV loads in both the upper and lower respiratory tracts. PIV5-RSV F was equally protective when administered intranasally or subcutaneously. In all cases, the prefusion F mutant did not induce higher neutralizing antibody titers than wild-type F. These results show that antibodies against both pre- and postfusion F are important for neutralizing RSV and should be considered when designing a vectored RSV vaccine. The findings also that indicate PIV5-RSV F may be administered subcutaneously, which is the preferred route for vaccinating infants, who may develop nasal congestion as a result of intranasal vaccination. IMPORTANCE Despite decades of research, human respiratory syncytial virus (RSV) is still a major health concern for which there is no vaccine. A parainfluenza virus 5-vectored vaccine expressing the native RSV fusion protein (F) has previously been shown to confer robust immunity against RSV infection in mice, cotton rats, and nonhuman primates. To improve our previous vaccine candidate, we developed four new candidates that incorporate modifications to the PIV5 backbone, replace native RSV F with a prefusion-stabilized RSV F mutant, or combine both RSV F and PIV5 backbone modifications. In this work, we characterized the new vaccine candidates and tested their efficacies in both murine and cotton rat models of RSV infection. Most importantly, we found that PIV5-based RSV vaccine candidates were efficacious in preventing lower respiratory tract infection as well as in reducing the nasal viral load when administered via the subcutaneous route.


2015 ◽  
Vol 89 (13) ◽  
pp. 6835-6847 ◽  
Author(s):  
Lori McGinnes Cullen ◽  
Madelyn R. Schmidt ◽  
Sarah A. Kenward ◽  
Robert T. Woodland ◽  
Trudy G. Morrison

ABSTRACTVirus-like particles (VLPs) built on the Newcastle disease virus (NDV) core proteins, NP and M, and containing two chimeric proteins, F/F and H/G, composed of respiratory syncytial virus (RSV) fusion protein (F) and glycoprotein (G) ectodomains fused to the transmembrane and cytoplasmic domains of the NDV F and HN proteins, respectively, stimulate durable, protective RSV neutralizing antibodies in mice. Here, we report the properties of VLPs constructed to contain mutant RSV F protein ectodomains stabilized in prefusion (pre-F/F) or postfusion (post-F/F) configurations. The structures of the chimeric proteins assembled into VLPs were verified immunologically by their reactivities with a conformationally restricted anti-F protein monoclonal antibody. Following immunization of mice, without adjuvant, pre-F/F-containing VLPs induced significantly higher neutralizing antibody titers than the post-F/F-containing VLPs or the wild-type F/F-containing VLPs after a single immunization but not after prime and boost immunization. The specificities of anti-F IgG induced by the two mutant VLPs were assessed by enzyme-linked immunosorbent assay (ELISA) using soluble forms of the prefusion and postfusion forms of the F protein as targets. While both types of VLPs stimulated similar levels of IgG specific for the soluble postfusion F protein, titers of IgG specific for prefusion F induced by the pre-F/F-containing VLPs were higher than those induced by post-F/F-containing VLPs. Thus, VLPs containing a stabilized prefusion form of the RSV F protein represent a promising RSV vaccine candidate.IMPORTANCEThe development of vaccines for respiratory syncytial virus has been hampered by a lack of understanding of the requirements for eliciting high titers of neutralizing antibodies. The results of this study suggest that particle-associated RSV F protein containing mutations that stabilize the structure in a prefusion conformation may stimulate higher titers of protective antibodies than particles containing F protein in a wild-type or postfusion conformation. These findings indicate that the prefusion F protein assembled into VLPs has the potential to produce a successful RSV vaccine candidate.


Sign in / Sign up

Export Citation Format

Share Document