scholarly journals Large field-of-view incoherent volumetric imaging in living human retina by confocal oblique scanning laser ophthalmoscopy

2021 ◽  
Author(s):  
Wenjun Shao ◽  
Ji Yi

Three-dimensional (3D) volumetric imaging of the human retina is instrumental to monitor and diagnose blinding conditions. Although coherent retinal imaging is well established by optical coherence tomography, it is still a large void for incoherent volumetric imaging in the human retina. Here, we report confocal oblique scanning laser ophthalmoscopy (CoSLO), to fill that void and harness incoherent optical contrast in 3D. CoSLO uses oblique scanning laser and remote focusing to acquire depth signal in parallel, avoid the lengthy z-stacking, and image a large field of view (FOV). In addition, confocal gating is introduced by a linear sensor array to improve the contrast and resolution. For the first time, we achieved incoherent 3D human retinal imaging with >20° viewing angle within only 5 seconds. The depth resolution is ~45 microns in vivo. We demonstrated label-free incoherent contrast by CoSLO, revealing unique features in the retina. CoSLO will be an important technique for clinical care of retinal conditions and fundamental vision science, by offering unique volumetric incoherent contrasts.

2017 ◽  
Vol 9 (1) ◽  
pp. 25 ◽  
Author(s):  
Lei Zhang ◽  
Weiye Song ◽  
Di Shao ◽  
Sui Zhang ◽  
Manishi Desai ◽  
...  

2019 ◽  
Author(s):  
Weiye Song ◽  
Libo Zhou ◽  
Ji Yi

AbstractOblique scanning laser ophthalmoscopy (oSLO) is a recently developed technique to provide three-dimensional volumetric fluorescence imaging in retina over a large field of view, without the need for depth sectioning. Here in the paper, we present high-speed volumetric fluorescein angiography (vFA) in mouse retina in vivo by oSLO. By simply using a low-cost industrial CMOS camera, we improved the imaging speed by ~10 times comparing to our previous results, achieving vFA at 2 volumes per second. Enabled by high-speed vFA, we visualized hemodynamics at single capillary level in 3D and provided methods to quantify capillary hematocrit, absolute capillary blood flow speed, and detection of capillary flow stagnancy and stalling. The quantitative metrics for capillary hemodynamics at 3D retinal capillary network can offer valuable insight in vision science and retinal pathologies.


Author(s):  
Yinhao Pan ◽  
Ningbo Chen ◽  
Liangjian Liu ◽  
Chengbo Liu ◽  
Zhiqiang Xu ◽  
...  

AbstractPhotoacoustic microscopy is an in vivo imaging technology based on the photoacoustic effect. It is widely used in various biomedical studies because it can provide high-resolution images while being label-free, safe, and harmless to biological tissue. Polygon-scanning is an effective scanning method in photoacoustic microscopy that can realize fast imaging of biological tissue with a large field of view. However, in polygon-scanning, fluctuations of the rotating motor speed and the geometric error of the rotating mirror cause image distortions, which seriously affect the photoacoustic-microscopy imaging quality. To improve the image quality of photoacoustic microscopy using polygon-scanning, an image correction method is proposed based on accurate ultrasound positioning. In this method, the photoacoustic and ultrasound imaging data of the sample are simultaneously obtained, and the angle information of each mirror used in the polygon-scanning is extracted from the ultrasonic data to correct the photoacoustic images. Experimental results show that the proposed method can significantly reduce image distortions in photoacoustic microscopy, with the image dislocation offset decreasing from 24.774 to 10.365 μm.


2011 ◽  
Author(s):  
Kazuhiro Sasaki ◽  
Kazuhiro Kurokawa ◽  
Shuichi Makita ◽  
Daiki Tamada ◽  
Yiheng Lim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document