Prediction Under Uncertainty: Dissociating Sensory from Cognitive Expectations in Highly Uncertain Musical Contexts
Predictive models in the brain rely on the continuous extraction of regularities from the environment. These models are thought to be updated by novel information, as reflected in prediction error responses such as the mismatch negativity (MMN). However, although in real life individuals often face situations in which uncertainty prevails, it remains unclear whether and how predictive models emerge in high-uncertainty contexts. Recent research suggests that uncertainty affects the magnitude of MMN responses in the context of music listening. However, musical predictions are typically studied with MMN stimulation paradigms based on Western tonal music, which are characterized by relatively high predictability. Hence, we developed an MMN paradigm to investigate how the high uncertainty of atonal music modulates predictive processes as indexed by the MMN and behavior. Using MEG in a group of 20 subjects without musical training, we demonstrate that the magnetic MMN in response to pitch, intensity, timbre, and location deviants is evoked in both tonal and atonal melodies, with no significant differences between conditions. In contrast, in a separate behavioral experiment involving 39 non-musicians, participants detected pitch deviants more accurately and rated confidence higher in the tonal than in the atonal musical context. These results indicate that contextual tonal uncertainty modulates processing stages in which conscious awareness is involved, although deviants robustly elicit low-level pre-attentive responses such as the MMN. The achievement of robust MMN responses, despite high tonal uncertainty, is relevant for future studies comparing groups of listeners' MMN responses to increasingly ecological music stimuli.