Three new Cenomanian conifers from El Chango (Chiapas, Mexico) offer a snapshot of the geographic mosaic of the Mesozoic conifer decline
Premise of study: El Chango is a recently discovered quarry that contains extremely well preserved fossils. The Cenomanian age of the locality corresponds to a time when the global flora was transitioning from gymnosperm- to angiosperm-dominated, yet conifers predominate in this locality. These fossils thus provide a rare opportunity to understand the replacement of conifers by angiosperms as the dominant group of plants. Methods: We collected material from El Chango in annual expeditions (2010 to 2014). We selected the three most abundant and best preserved conifer morphotypes and conducted a total-evidence (i.e., including molecular and morphological data) phylogenetic analysis of a sample of 72 extant conifer species plus the three fossils. We use these results to inform our taxonomic decisions. Results: We obtained four equally most-parsimonious trees (consistency index = 44.1%, retention index = 78.8%). Despite ambiguous relationships among some extant taxa, the three fossil conifers had the same phylogenetic position in all four most parsimonious trees; we describe these species as new: Sequoiadendron helicalancifolium sp. nov. (Cupressaceae), and Microcachrys rhomboidea sp. nov. and Dacrydium bifoliosus sp. nov (Podocarpaceae). The ecosystem is interpreted as a coastal humid mixed forest. Conclusions: Our findings contribute to the understanding of Cenomanian equatorialregions, and support the hypothesis of a geographically and ecologically structured rise of angiosperms, with conifers remaining dominant in brackish-water and angiosperms becoming dominant in freshwater-ecosystems. These fossils fill in gaps in the evolutionary history of lineages like Microcachrys, which we demonstrate occurred in the Northern hemisphere before becoming restricted to its current range (Tasmania).