scholarly journals Improving the global dimensions of intrinsically disordered proteins in Martini 3

2021 ◽  
Author(s):  
F. Emil Thomasen ◽  
Francesco Pesce ◽  
Mette Ahrensback Roesgaard ◽  
Giulio Tesei ◽  
Kresten Lindorff-Larsen

AbstractCoarse-grained molecular dynamics simulations are a useful tool to determine conformational ensembles of intrinsically disordered proteins (IDPs). Here, we show that the coarse-grained force field Martini 3 underestimates the global dimensions of IDPs when compared with small angle X-ray scattering (SAXS) data. Increasing the strength of protein-water interactions favors more expanded conformations, improving agreement with SAXS data and alleviating problems with overestimated IDP-IDP interactions.

Life ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 109 ◽  
Author(s):  
Sandra S. Sullivan ◽  
Robert O.J. Weinzierl

Many of the proteins involved in key cellular regulatory events contain extensive intrinsically disordered regions that are not readily amenable to conventional structure/function dissection. The oncoprotein c-MYC plays a key role in controlling cell proliferation and apoptosis and more than 70% of the primary sequence is disordered. Computational approaches that shed light on the range of secondary and tertiary structural conformations therefore provide the only realistic chance to study such proteins. Here, we describe the results of several tests of force fields and water models employed in molecular dynamics simulations for the N-terminal 88 amino acids of c-MYC. Comparisons of the simulation data with experimental secondary structure assignments obtained by NMR establish a particular implicit solvation approach as highly congruent. The results provide insights into the structural dynamics of c-MYC1-88, which will be useful for guiding future experimental approaches. The protocols for trajectory analysis described here will be applicable for the analysis of a variety of computational simulations of intrinsically disordered proteins.


Author(s):  
Katharina Weinhäupl ◽  
Yong Wang ◽  
Audrey Hessel ◽  
Martha Brennich ◽  
Kresten Lindorff-Larsen ◽  
...  

The mitochondrial Tim chaperones are responsible for the transport of membrane proteins across the inter-membrane space to the inner and outer mitochondrial membranes. TIM9·10, a hexameric 70 kDa protein complex formed by 3 copies of Tim9 and Tim10, guides its clients across the aqueous compartment. The TIM9·10·12 complex is the anchor point at the inner-membrane insertase complex TIM22. The mechanism of client transport by TIM9·10 has been resolved recently, but the structure and subunit composition of the TIM9·10·12 complex remains largely unresolved. Furthermore, the assembly process of the hexameric TIM chaperones from its subunits remained elusive. We investigate the structural and dynamical properties of the Tim subunits, and show that they are highly dynamic. In their non-assembled form, the subunits behave as intrinsically disordered proteins; when the conserved cysteines of the CX3C-Xn-CX3C motifs are formed, short marginally stable α-helices are formed, which are only fully stabilized upon hexamer formation to the mature chaperone. Subunits are in equilibrium between their hexamer-embedded and a free form, with exchange kinetics on a minutes time scale. Joint NMR, small-angle X-ray scattering and MD simulation data allow us to derive a structural model of the TIM9·10·12 assembly, which has a 2:3:1 stoichiometry (Tim9:Tim10:Tim12) with a conserved hydrophobic client-binding groove and flexible N- and C-terminal tentacles.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pablo Herrera-Nieto ◽  
Adrià Pérez ◽  
Gianni De Fabritiis

Abstract The exploration of intrinsically disordered proteins in isolation is a crucial step to understand their complex dynamical behavior. In particular, the emergence of partially ordered states has not been explored in depth. The experimental characterization of such partially ordered states remains elusive due to their transient nature. Molecular dynamics mitigates this limitation thanks to its capability to explore biologically relevant timescales while retaining atomistic resolution. Here, millisecond unbiased molecular dynamics simulations were performed in the exemplar N-terminal region of p53. In combination with state-of-the-art Markov state models, simulations revealed the existence of several partially ordered states accounting for $$\sim $$ ∼ 40% of the equilibrium population. Some of the most relevant states feature helical conformations similar to the bound structure of p53 to Mdm2, as well as novel $$\beta $$ β -sheet elements. This highlights the potential complexity underlying the energy surface of intrinsically disordered proteins.


Sign in / Sign up

Export Citation Format

Share Document