scholarly journals Cell-type specific cis-eQTLs in eight brain cell-types identifies novel risk genes for human brain disorders

Author(s):  
Julien Bryois ◽  
Daniela Calini ◽  
Will Macnair ◽  
Lynette Foo ◽  
Eduard Urich ◽  
...  

Most expression quantitative trait loci (eQTL) studies to date have been performed in heterogeneous brain tissues as opposed to specific cell types. To investigate the genetics of gene expression in adult human cell types from the central nervous system (CNS), we performed an eQTL analysis using single nuclei RNA-seq from 196 individuals in eight CNS cell types. We identified 6108 eGenes, a substantial fraction (43%, 2620 out of 6108) of which show cell-type specific effects, with strongest effects in microglia. Integration of CNS cell-type eQTLs with GWAS revealed novel relationships between expression and disease risk for neuropsychiatric and neurodegenerative diseases. For most GWAS loci, a single gene colocalized in a single cell type providing new clues into disease etiology. Our findings demonstrate substantial contrast in genetic regulation of gene expression among CNS cell types and reveal genetic mechanisms by which disease risk genes influence neurological disorders.

2020 ◽  
Author(s):  
Devanshi Patel ◽  
Xiaoling Zhang ◽  
John J. Farrell ◽  
Jaeyoon Chung ◽  
Thor D. Stein ◽  
...  

ABSTRACTBecause regulation of gene expression is heritable and context-dependent, we investigated AD-related gene expression patterns in cell-types in blood and brain. Cis-expression quantitative trait locus (eQTL) mapping was performed genome-wide in blood from 5,257 Framingham Heart Study (FHS) participants and in brain donated by 475 Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The association of gene expression with genotypes for all cis SNPs within 1Mb of genes was evaluated using linear regression models for unrelated subjects and linear mixed models for related subjects. Cell type-specific eQTL (ct-eQTL) models included an interaction term for expression of “proxy” genes that discriminate particular cell type. Ct-eQTL analysis identified 11,649 and 2,533 additional significant gene-SNP eQTL pairs in brain and blood, respectively, that were not detected in generic eQTL analysis. Of note, 386 unique target eGenes of significant eQTLs shared between blood and brain were enriched in apoptosis and Wnt signaling pathways. Five of these shared genes are established AD loci. The potential importance and relevance to AD of significant results in myeloid cell-types is supported by the observation that a large portion of GWS ct-eQTLs map within 1Mb of established AD loci and 58% (23/40) of the most significant eGenes in these eQTLs have previously been implicated in AD. This study identified cell-type specific expression patterns for established and potentially novel AD genes, found additional evidence for the role of myeloid cells in AD risk, and discovered potential novel blood and brain AD biomarkers that highlight the importance of cell-type specific analysis.


2019 ◽  
Author(s):  
Alexander J. Cammack ◽  
Arnav Moudgil ◽  
Tomas Lagunas ◽  
Michael J. Vasek ◽  
Mark Shabsovich ◽  
...  

AbstractTranscription factors (TFs) play a central role in the regulation of gene expression, controlling everything from cell fate decisions to activity dependent gene expression. However, widely-used methods for TF profiling in vivo (e.g. ChIP-seq) yield only an aggregated picture of TF binding across all cell types present within the harvested tissue; thus, it is challenging or impossible to determine how the same TF might bind different portions of the genome in different cell types, or even to identify its binding events at all in rare cell types in a complex tissue such as the brain. Here we present a versatile methodology, FLEX Calling Cards, for the mapping of TF occupancy in specific cell types from heterogenous tissues. In this method, the TF of interest is fused to a hyperactive piggyBac transposase (hypPB), and this bipartite gene is delivered, along with donor transposons, to mouse tissue via a Cre-dependent adeno-associated virus (AAV). The fusion protein is expressed in Cre-expressing cells where it inserts transposon “Calling Cards” near to TF binding sites. These transposons permanently mark TF binding events and can be mapped using high-throughput sequencing. Alternatively, unfused hypPB interacts with and records the binding of the super enhancer (SE)-associated bromodomain protein, Brd4. To demonstrate the FLEX Calling Card method, we first show that donor transposon and transposase constructs can be efficiently delivered to the postnatal day 1 (P1) mouse brain with AAV and that insertion profiles report TF occupancy. Then, using a Cre-dependent hypPB virus, we show utility of this tool in defining cell type-specific TF profiles in multiple cell types of the brain. This approach will enable important cell type-specific studies of TF-mediated gene regulation in the brain and will provide valuable insights into brain development, homeostasis, and disease.


Author(s):  
Jiebiao Wang ◽  
Kathryn Roeder ◽  
Bernie Devlin

AbstractWhen assessed over a large number of samples, bulk RNA sequencing provides reliable data for gene expression at the tissue level. Single-cell RNA sequencing (scRNA-seq) deepens those analyses by evaluating gene expression at the cellular level. Both data types lend insights into disease etiology. With current technologies, however, scRNA-seq data are known to be noisy. Moreover, constrained by costs, scRNA-seq data are typically generated from a relatively small number of subjects, which limits their utility for some analyses, such as identification of gene expression quantitative trait loci (eQTLs). To address these issues while maintaining the unique advantages of each data type, we develop a Bayesian method (bMIND) to integrate bulk and scRNA-seq data. With a prior derived from scRNA-seq data, we propose to estimate sample-level cell-type-specific (CTS) expression from bulk expression data. The CTS expression enables large-scale sample-level downstream analyses, such as detecting CTS differentially expressed genes (DEGs) and eQTLs. Through simulations, we demonstrate that bMIND improves the accuracy of sample-level CTS expression estimates and power to discover CTS-DEGs when compared to existing methods. To further our understanding of two complex phenotypes, autism spectrum disorder and Alzheimer’s disease, we apply bMIND to gene expression data of relevant brain tissue to identify CTS-DEGs. Our results complement findings for CTS-DEGs obtained from snRNA-seq studies, replicating certain DEGs in specific cell types while nominating other novel genes in those cell types. Finally, we calculate CTS-eQTLs for eleven brain regions by analyzing GTEx V8 data, creating a new resource for biological insights.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Devanshi Patel ◽  
Xiaoling Zhang ◽  
John J. Farrell ◽  
Jaeyoon Chung ◽  
Thor D. Stein ◽  
...  

AbstractBecause regulation of gene expression is heritable and context-dependent, we investigated AD-related gene expression patterns in cell types in blood and brain. Cis-expression quantitative trait locus (eQTL) mapping was performed genome-wide in blood from 5257 Framingham Heart Study (FHS) participants and in brain donated by 475 Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The association of gene expression with genotypes for all cis SNPs within 1 Mb of genes was evaluated using linear regression models for unrelated subjects and linear-mixed models for related subjects. Cell-type-specific eQTL (ct-eQTL) models included an interaction term for the expression of “proxy” genes that discriminate particular cell type. Ct-eQTL analysis identified 11,649 and 2533 additional significant gene-SNP eQTL pairs in brain and blood, respectively, that were not detected in generic eQTL analysis. Of note, 386 unique target eGenes of significant eQTLs shared between blood and brain were enriched in apoptosis and Wnt signaling pathways. Five of these shared genes are established AD loci. The potential importance and relevance to AD of significant results in myeloid cell types is supported by the observation that a large portion of GWS ct-eQTLs map within 1 Mb of established AD loci and 58% (23/40) of the most significant eGenes in these eQTLs have previously been implicated in AD. This study identified cell-type-specific expression patterns for established and potentially novel AD genes, found additional evidence for the role of myeloid cells in AD risk, and discovered potential novel blood and brain AD biomarkers that highlight the importance of cell-type-specific analysis.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Kai Kang ◽  
Caizhi Huang ◽  
Yuanyuan Li ◽  
David M. Umbach ◽  
Leping Li

Abstract Background Biological tissues consist of heterogenous populations of cells. Because gene expression patterns from bulk tissue samples reflect the contributions from all cells in the tissue, understanding the contribution of individual cell types to the overall gene expression in the tissue is fundamentally important. We recently developed a computational method, CDSeq, that can simultaneously estimate both sample-specific cell-type proportions and cell-type-specific gene expression profiles using only bulk RNA-Seq counts from multiple samples. Here we present an R implementation of CDSeq (CDSeqR) with significant performance improvement over the original implementation in MATLAB and an added new function to aid cell type annotation. The R package would be of interest for the broader R community. Result We developed a novel strategy to substantially improve computational efficiency in both speed and memory usage. In addition, we designed and implemented a new function for annotating the CDSeq estimated cell types using single-cell RNA sequencing (scRNA-seq) data. This function allows users to readily interpret and visualize the CDSeq estimated cell types. In addition, this new function further allows the users to annotate CDSeq-estimated cell types using marker genes. We carried out additional validations of the CDSeqR software using synthetic, real cell mixtures, and real bulk RNA-seq data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project. Conclusions The existing bulk RNA-seq repositories, such as TCGA and GTEx, provide enormous resources for better understanding changes in transcriptomics and human diseases. They are also potentially useful for studying cell–cell interactions in the tissue microenvironment. Bulk level analyses neglect tissue heterogeneity, however, and hinder investigation of a cell-type-specific expression. The CDSeqR package may aid in silico dissection of bulk expression data, enabling researchers to recover cell-type-specific information.


2019 ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific CNS cell types. Paired analysis of the transcriptome and DNA modifications in astrocytes and microglia demonstrates differential usage of DNA methylation and hydroxymethylation in CG and non-CG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any CNS cell type for which a cell type-specific cre is available.


2021 ◽  
Author(s):  
Kai Kang ◽  
Caizhi David Huang ◽  
Yuanyuan Li ◽  
David M. Umbach ◽  
Leping Li

AbstractBackgroundBiological tissues consist of heterogenous populations of cells. Because gene expression patterns from bulk tissue samples reflect the contributions from all cells in the tissue, understanding the contribution of individual cell types to the overall gene expression in the tissue is fundamentally important. We recently developed a computational method, CDSeq, that can simultaneously estimate both sample-specific cell-type proportions and cell-type-specific gene expression profiles using only bulk RNA-Seq counts from multiple samples. Here we present an R implementation of CDSeq (CDSeqR) with significant performance improvement over the original implementation in MATLAB and with a new function to aid interpretation of deconvolution outcomes. The R package would be of interest for the broader R community.ResultWe developed a novel strategy to substantially improve computational efficiency in both speed and memory usage. In addition, we designed and implemented a new function for annotating CDSeq-estimated cell types using publicly available single-cell RNA sequencing (scRNA-seq) data (single-cell data from 20 major organs are included in the R package). This function allows users to readily interpret and visualize the CDSeq-estimated cell types. We carried out additional validations of the CDSeqR software with in silico and in vitro mixtures and with real experimental data including RNA-seq data from the Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) project.ConclusionsThe existing bulk RNA-seq repositories, such as TCGA and GTEx, provide enormous resources for better understanding changes in transcriptomics and human diseases. They are also potentially useful for studying cell-cell interactions in the tissue microenvironment. However, bulk level analyses neglect tissue heterogeneity and hinder investigation in a cell-type-specific fashion. The CDSeqR package can be viewed as providing in silico single-cell dissection of bulk measurements. It enables researchers to gain cell-type-specific information from bulk RNA-seq data.


2020 ◽  
Author(s):  
Kathleen C. Keough ◽  
Parisha P. Shah ◽  
Nadeera M. Wickramasinghe ◽  
Carolyn E. Dundes ◽  
Angela Chen ◽  
...  

AbstractThree-dimensional genome organization, specifically organization of heterochromatin at the nuclear periphery, coordinates cell type-specific gene regulation. While defining various histone modifications and chromatin-associated proteins in multiple cell types has provided important insights into epigenetic regulation of gene expression and cellular identity, peripheral heterochromatin has not been mapped comprehensively and relatively few examples have emerged detailing the role of peripheral heterochromatin in cellular identity, cell fate choices, and/or organogenesis. In this study, we define nuclear peripheral heterochromatin organization signatures based on association with LAMIN B1 and/or dimethylation of lysine 9 on H3 (H3K9me2) across thirteen human cell types encompassing pluripotent stem cells, intermediate progenitors and differentiated cells from all three germ layers. Genomic analyses across this atlas reveal that lamin-associated chromatin is organized into at least two different compartments, defined by differences in genome coverage, chromatin accessibility, residence of transposable elements, replication timing domains, and gene complements. Our datasets reveal that only a small subset of lamin-associated chromatin domains are cell type invariant, underscoring the complexity of peripheral heterochromatin organization. Moreover, by integrating peripheral chromatin maps with transcriptional data, we find evidence of cooperative shifts between chromatin structure and gene expression associated with each cell type. This atlas of peripheral chromatin provides the largest resource to date for peripheral chromatin organization and a deeper appreciation for how this organization may impact the establishment and maintenance of cellular identity.


Sign in / Sign up

Export Citation Format

Share Document