Relationship between systolic blood pressure and decision-making during emotional processing
Objective: Emotional states are expressed in body and mind through subjective experience of physiological changes. In previous work, subliminal priming of anger prior to lexical decisions increased systolic blood pressure (SBP). This increase predicted the slowing of response times (RT), suggesting that baroreflex-related autonomic changes and their interoceptive (feedback) representations, influence cognition. Alexithymia is a subclinical affective dysfunction characterized by difficulty in identifying emotions. Atypical autonomic and interoceptive profiles are observed in alexithymia. Therefore, we sought to identify mechanisms through which SBP fluctuations during emotional processing might influence decision-making, including whether alexithymia contributes to this relationship. Methods Thirty-two male participants performed an affect priming paradigm and completed the Toronto Alexithymia Scale. Emotional faces were briefly presented (20ms) prior a short-term memory task. RT, accuracy and SBP were recorded on a trial-by-trial basis. Generalized mixed-effects linear models were used to evaluate the impact of emotion, physiological changes, alexithymia score, and their interactions, on performances. Results A main effect of emotion was observed on accuracy. Participants were more accurate on trials with anger primes, compared to neutral priming. Greater accuracy was related to increased SBP. An interaction between SBP and emotion was observed on RT: Increased SBP was associated with RT prolongation in the anger priming condition, yet this relationship was absent under the sadness priming. Alexithymia did not significantly moderate the above relationships. Conclusions Our data suggest that peripheral autonomic responses during affective challenges guide cognitive processes. We discuss our findings in the theoretical framework proposed by Lacey and Lacey (1970).