Long-Term Inactivation of Sodium Channels as a Mechanism of Adaptation in CA1 Pyramidal Neurons
The hippocampus is involved in memory and spatial navigation. Many CA1 pyramidal cells function as place cells, increasing their firing rate when a specific place field is traversed. The dependence of CA1 place cell firing on position within the place field is asymmetric. We investigated the source of this asymmetry by injecting triangular depolarizing current ramps to approximate the spatially-tuned, temporally-diffuse depolarizing synaptic input received by these neurons while traversing a place field. Ramps were applied to rat CA1 pyramidal neurons in vitro (slice electrophysiology) and in silico (multi-compartmental NEURON model). Under control conditions, CA1 neurons fired more action potentials at higher frequencies on the up-ramp versus the down-ramp. This effect was more pronounced for dendritic compared to somatic ramps. We incorporated a five-state Markov scheme for NaV1.6 channels into our model and calibrated the spatial dependence of long-term inactivation according to the literature; this spatial dependence was sufficient to explain the difference in dendritic versus somatic ramps. Long-term inactivation reduced the firing frequency by decreasing open-state occupancy, and reduced spike amplitude during trains by decreasing occupancy in closed states, which comprise the available pool. PKC activators like phorbol ester phorbol-dibutyrate (PDBu) are known to reduce NaV long-term inactivation. PDBu application removed spike amplitude attenuation during spike trains in vitro, more visibly in dendrites, consistent with decreased NaV long-term inactivation. Moreover, PDBu greatly reduced adaptation, consistent with our hypothesized mechanism. Our synergistic experimental/computational approach shows that long-term inactivation of NaV1.6 is the primary mechanism of adaptation in CA1 pyramidal cells.