Fingerprinting of skin cells by live cell Raman spectroscopy reveals melanoma cell heterogeneity and cell-type specific responses to UVR
Raman spectroscopy is an emerging dermatological technique with the potential to discriminate biochemically between cell types in a label free and non-invasive manner. Here we use live single cell Raman spectroscopy and principal component analysis (PCA) to fingerprint mouse melanoblasts, melanocytes, keratinocytes and melanoma cells. We show the differences in their spectra are attributable to biomarkers in the melanin biosynthesis pathway and that melanoma cells are a heterogeneous population that sit on a trajectory between undifferentiated melanoblasts and differentiated melanocytes. We demonstrate the utility of Raman spectroscopy as a highly sensitive tool to probe the melanin biosynthesis pathway and its immediate response to UV irradiation revealing previously undescribed opposing responses to UVA and UVB irradiation in melanocytes. Finally, we identify melanocyte specific accumulation of β-carotene correlated with a stabilisation of the UVR response in lipids and proteins consistent with a β-carotene mediated photoprotective mechanism. In summary our data show that Raman spectroscopy can be used to determine the differentiation status of cells of the melanocyte lineage and describe the immediate and temporal biochemical changes associated with UV exposure which differ depending on cell type, differentiation status and competence to synthesise melanin.